Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupmpt Structured version   Visualization version   GIF version

Theorem smfsupmpt 41519
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupmpt.n 𝑛𝜑
smfsupmpt.x 𝑥𝜑
smfsupmpt.y 𝑦𝜑
smfsupmpt.m (𝜑𝑀 ∈ ℤ)
smfsupmpt.z 𝑍 = (ℤ𝑀)
smfsupmpt.s (𝜑𝑆 ∈ SAlg)
smfsupmpt.b ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
smfsupmpt.f ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
smfsupmpt.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
Assertion
Ref Expression
smfsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐴(𝑛)   𝐵(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)   𝑉(𝑥,𝑦,𝑛)

Proof of Theorem smfsupmpt
StepHypRef Expression
1 smfsupmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < )))
3 smfsupmpt.x . . . . 5 𝑥𝜑
4 smfsupmpt.d . . . . . . 7 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
54a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
6 smfsupmpt.n . . . . . . . . 9 𝑛𝜑
7 eqidd 2753 . . . . . . . . . . . 12 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵)))
8 smfsupmpt.f . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
97, 8fvmpt2d 6447 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = (𝑥𝐴𝐵))
109dmeqd 5473 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = dom (𝑥𝐴𝐵))
11 nfcv 2894 . . . . . . . . . . . . 13 𝑥𝑛
12 nfcv 2894 . . . . . . . . . . . . 13 𝑥𝑍
1311, 12nfel 2907 . . . . . . . . . . . 12 𝑥 𝑛𝑍
143, 13nfan 1969 . . . . . . . . . . 11 𝑥(𝜑𝑛𝑍)
15 eqid 2752 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
16 smfsupmpt.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1716adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
18 smfsupmpt.b . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
19183expa 1111 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
2014, 17, 19, 8smffmpt 41509 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
2120fvmptelrn 39919 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
2214, 15, 21dmmptdf 39908 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
23 eqidd 2753 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝐴 = 𝐴)
2410, 22, 233eqtrrd 2791 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝐴 = dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
256, 24iineq2d 4685 . . . . . . . 8 (𝜑 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
26 nfcv 2894 . . . . . . . . 9 𝑥 𝑛𝑍 𝐴
27 nfmpt1 4891 . . . . . . . . . . . . 13 𝑥(𝑥𝐴𝐵)
2812, 27nfmpt 4890 . . . . . . . . . . . 12 𝑥(𝑛𝑍 ↦ (𝑥𝐴𝐵))
2928, 11nffv 6351 . . . . . . . . . . 11 𝑥((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3029nfdm 5514 . . . . . . . . . 10 𝑥dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3112, 30nfiin 4693 . . . . . . . . 9 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3226, 31rabeqf 3322 . . . . . . . 8 ( 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
3325, 32syl 17 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
34 smfsupmpt.y . . . . . . . . . 10 𝑦𝜑
35 nfv 1984 . . . . . . . . . 10 𝑦 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3634, 35nfan 1969 . . . . . . . . 9 𝑦(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
37 nfcv 2894 . . . . . . . . . . . 12 𝑛𝑥
38 nfii1 4695 . . . . . . . . . . . 12 𝑛 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3937, 38nfel 2907 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
406, 39nfan 1969 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
41 simpll 807 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝜑)
42 simpr 479 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
43 eliinid 39785 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
4443adantll 752 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
4524eqcomd 2758 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
4645adantlr 753 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
4744, 46eleqtrd 2833 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥𝐴)
489fveq1d 6346 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
49483adant3 1126 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
50 simp3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥𝐴) → 𝑥𝐴)
5115fvmpt2 6445 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5250, 18, 51syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5349, 52eqtr2d 2787 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
5453breq1d 4806 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
5541, 42, 47, 54syl3anc 1473 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
5640, 55ralbida 3112 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∀𝑛𝑍 𝐵𝑦 ↔ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
5736, 56rexbid 3181 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
583, 57rabbida 39765 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
5933, 58eqtrd 2786 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
605, 59eqtrd 2786 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
613, 60alrimi 2221 . . . 4 (𝜑 → ∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
62 nfcv 2894 . . . . . . . . . . . . . 14 𝑛
63 nfra1 3071 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 𝐵𝑦
6462, 63nfrex 3137 . . . . . . . . . . . . 13 𝑛𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦
65 nfii1 4695 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝐴
6664, 65nfrab 3254 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
674, 66nfcxfr 2892 . . . . . . . . . . 11 𝑛𝐷
6837, 67nfel 2907 . . . . . . . . . 10 𝑛 𝑥𝐷
696, 68nfan 1969 . . . . . . . . 9 𝑛(𝜑𝑥𝐷)
70 simpll 807 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝜑)
71 simpr 479 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑛𝑍)
724eleq2i 2823 . . . . . . . . . . . . . . 15 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
7372biimpi 206 . . . . . . . . . . . . . 14 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
74 rabidim1 3248 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} → 𝑥 𝑛𝑍 𝐴)
7573, 74syl 17 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝐴)
7675adantr 472 . . . . . . . . . . . 12 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 𝐴)
77 simpr 479 . . . . . . . . . . . 12 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍)
78 eliinid 39785 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 𝐴𝑛𝑍) → 𝑥𝐴)
7976, 77, 78syl2anc 696 . . . . . . . . . . 11 ((𝑥𝐷𝑛𝑍) → 𝑥𝐴)
8079adantll 752 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥𝐴)
8153idi 2 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
8270, 71, 80, 81syl3anc 1473 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
8369, 82mpteq2da 4887 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑛𝑍𝐵) = (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
8483rneqd 5500 . . . . . . 7 ((𝜑𝑥𝐷) → ran (𝑛𝑍𝐵) = ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
8584supeq1d 8509 . . . . . 6 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
8685ex 449 . . . . 5 (𝜑 → (𝑥𝐷 → sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
873, 86ralrimi 3087 . . . 4 (𝜑 → ∀𝑥𝐷 sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
88 mpteq12f 4875 . . . 4 ((∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ∧ ∀𝑥𝐷 sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) → (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
8961, 87, 88syl2anc 696 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
902, 89eqtrd 2786 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
91 nfmpt1 4891 . . 3 𝑛(𝑛𝑍 ↦ (𝑥𝐴𝐵))
92 smfsupmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
93 smfsupmpt.z . . 3 𝑍 = (ℤ𝑀)
94 eqid 2752 . . . 4 (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵))
956, 8, 94fmptdf 6542 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
96 eqid 2752 . . 3 {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦}
97 eqid 2752 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
9891, 28, 92, 93, 16, 95, 96, 97smfsup 41518 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
9990, 98eqeltrd 2831 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wal 1622   = wceq 1624  wnf 1849  wcel 2131  wral 3042  wrex 3043  {crab 3046   ciin 4665   class class class wbr 4796  cmpt 4873  dom cdm 5258  ran crn 5259  cfv 6041  supcsup 8503  cr 10119   < clt 10258  cle 10259  cz 11561  cuz 11871  SAlgcsalg 41023  SMblFncsmblfn 41407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cc 9441  ax-ac2 9469  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-omul 7726  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-ac 9121  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-q 11974  df-rp 12018  df-ioo 12364  df-ioc 12365  df-ico 12366  df-fl 12779  df-rest 16277  df-topgen 16298  df-top 20893  df-bases 20944  df-salg 41024  df-salgen 41028  df-smblfn 41408
This theorem is referenced by:  smfinflem  41521
  Copyright terms: Public domain W3C validator