Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem3 Structured version   Visualization version   GIF version

Theorem smfsuplem3 41340
 Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem3.m (𝜑𝑀 ∈ ℤ)
smfsuplem3.z 𝑍 = (ℤ𝑀)
smfsuplem3.s (𝜑𝑆 ∈ SAlg)
smfsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem3.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem3.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsuplem3 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛,𝑦   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑦,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfv 1883 . 2 𝑎𝜑
2 smfsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsuplem3.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
4 ssrab2 3720 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
53, 4eqsstri 3668 . . . 4 𝐷 𝑛𝑍 dom (𝐹𝑛)
65a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 dom (𝐹𝑛))
7 smfsuplem3.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 uzid 11740 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
97, 8syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
10 smfsuplem3.z . . . . 5 𝑍 = (ℤ𝑀)
119, 10syl6eleqr 2741 . . . 4 (𝜑𝑀𝑍)
12 fveq2 6229 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1312dmeqd 5358 . . . 4 (𝑛 = 𝑀 → dom (𝐹𝑛) = dom (𝐹𝑀))
14 smfsuplem3.f . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514, 11ffvelrnd 6400 . . . . 5 (𝜑 → (𝐹𝑀) ∈ (SMblFn‘𝑆))
16 eqid 2651 . . . . 5 dom (𝐹𝑀) = dom (𝐹𝑀)
172, 15, 16smfdmss 41263 . . . 4 (𝜑 → dom (𝐹𝑀) ⊆ 𝑆)
1811, 13, 17iinssd 39628 . . 3 (𝜑 𝑛𝑍 dom (𝐹𝑛) ⊆ 𝑆)
196, 18sstrd 3646 . 2 (𝜑𝐷 𝑆)
20 nfv 1883 . . . 4 𝑛(𝜑𝑥𝐷)
2111ne0d 39622 . . . . 5 (𝜑𝑍 ≠ ∅)
2221adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
232adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
2414ffvelrnda 6399 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
25 eqid 2651 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2623, 24, 25smff 41262 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2726adantlr 751 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
28 iinss2 4604 . . . . . . . 8 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2928adantl 481 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
305sseli 3632 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
3130adantr 480 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3229, 31sseldd 3637 . . . . . 6 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3332adantll 750 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3427, 33ffvelrnd 6400 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
353rabeq2i 3228 . . . . . 6 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3635simprbi 479 . . . . 5 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3736adantl 481 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3820, 22, 34, 37suprclrnmpt 39780 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
39 smfsuplem3.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
4038, 39fmptd 6425 . 2 (𝜑𝐺:𝐷⟶ℝ)
417adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
422adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4314adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
44 simpr 476 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4541, 10, 42, 43, 3, 39, 44smfsuplem2 41339 . 2 ((𝜑𝑎 ∈ ℝ) → (𝐺 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
461, 2, 19, 40, 45issmfle2d 41336 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945   ⊆ wss 3607  ∅c0 3948  ∪ cuni 4468  ∩ ciin 4553   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ran crn 5144  ⟶wf 5922  ‘cfv 5926  supcsup 8387  ℝcr 9973   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  SAlgcsalg 40846  SMblFncsmblfn 41230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ioc 12218  df-ico 12219  df-fl 12633  df-rest 16130  df-topgen 16151  df-top 20747  df-bases 20798  df-salg 40847  df-salgen 40851  df-smblfn 41231 This theorem is referenced by:  smfsup  41341
 Copyright terms: Public domain W3C validator