Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem1 Structured version   Visualization version   GIF version

Theorem smfsuplem1 41338
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem1.m (𝜑𝑀 ∈ ℤ)
smfsuplem1.z 𝑍 = (ℤ𝑀)
smfsuplem1.s (𝜑𝑆 ∈ SAlg)
smfsuplem1.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem1.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem1.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem1.a (𝜑𝐴 ∈ ℝ)
smfsuplem1.h (𝜑𝐻:𝑍𝑆)
smfsuplem1.i ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
Assertion
Ref Expression
smfsuplem1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐷,𝑛,𝑥,𝑦   𝑥,𝐹,𝑦   𝑛,𝐺,𝑥   𝑛,𝐻,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑛)   𝐺(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem1
StepHypRef Expression
1 smfsuplem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
3 smfsuplem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
43ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
5 eqid 2651 . . . . . . . . . . . 12 dom (𝐹𝑛) = dom (𝐹𝑛)
62, 4, 5smff 41262 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
76ffnd 6084 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) Fn dom (𝐹𝑛))
87adantr 480 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐹𝑛) Fn dom (𝐹𝑛))
9 smfsuplem1.d . . . . . . . . . . . . 13 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
10 ssrab2 3720 . . . . . . . . . . . . 13 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
119, 10eqsstri 3668 . . . . . . . . . . . 12 𝐷 𝑛𝑍 dom (𝐹𝑛)
12 iinss2 4604 . . . . . . . . . . . 12 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
1311, 12syl5ss 3647 . . . . . . . . . . 11 (𝑛𝑍𝐷 ⊆ dom (𝐹𝑛))
1413ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐷 ⊆ dom (𝐹𝑛))
15 cnvimass 5520 . . . . . . . . . . . . 13 (𝐺 “ (-∞(,]𝐴)) ⊆ dom 𝐺
1615sseli 3632 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) → 𝑥 ∈ dom 𝐺)
1716adantl 481 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
18 nfv 1883 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝐷)
19 smfsuplem1.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
20 uzid 11740 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ𝑀))
22 smfsuplem1.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
2321, 22syl6eleqr 2741 . . . . . . . . . . . . . . . . 17 (𝜑𝑀𝑍)
2423ne0d 39622 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ≠ ∅)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
266adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2712adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2811sseli 3632 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2928adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3027, 29sseldd 3637 . . . . . . . . . . . . . . . . 17 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3130adantll 750 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3226, 31ffvelrnd 6400 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
339rabeq2i 3228 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3433simprbi 479 . . . . . . . . . . . . . . . 16 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3618, 25, 32, 35suprclrnmpt 39780 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
37 smfsuplem1.g . . . . . . . . . . . . . 14 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3836, 37fmptd 6425 . . . . . . . . . . . . 13 (𝜑𝐺:𝐷⟶ℝ)
3938fdmd 39734 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝐷)
4039ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → dom 𝐺 = 𝐷)
4117, 40eleqtrd 2732 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥𝐷)
4214, 41sseldd 3637 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom (𝐹𝑛))
43 mnfxr 10134 . . . . . . . . . . 11 -∞ ∈ ℝ*
4443a1i 11 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
45 smfsuplem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
4645rexrd 10127 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
4746ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
4832an32s 863 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
4941, 48syldan 486 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5049rexrd 10127 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
5149mnfltd 11996 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ < ((𝐹𝑛)‘𝑥))
5216adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
5338ffdmd 6101 . . . . . . . . . . . . . 14 (𝜑𝐺:dom 𝐺⟶ℝ)
5453ffvelrnda 6399 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
5552, 54syldan 486 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5655adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5745ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ)
58 an32 856 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) ↔ ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
5958biimpi 206 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
6018, 32, 35suprubrnmpt 39782 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6237a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
6362, 36fvmpt2d 6332 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6463adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6561, 64breqtrrd 4713 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6641, 65syldan 486 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6743a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
6846adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
69 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
7038ffnd 6084 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐷)
71 elpreima 6377 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐷 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7469, 73mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴)))
7574simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ (-∞(,]𝐴))
7667, 68, 75iocleubd 40104 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7776adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7849, 56, 57, 66, 77letrd 10232 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
7944, 47, 50, 51, 78eliocd 40048 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
808, 42, 79elpreimad 39768 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
8180ssd 39566 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ ((𝐹𝑛) “ (-∞(,]𝐴)))
82 smfsuplem1.i . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
83 inss1 3866 . . . . . . . 8 ((𝐻𝑛) ∩ dom (𝐹𝑛)) ⊆ (𝐻𝑛)
8482, 83syl6eqss 3688 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8581, 84sstrd 3646 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8685ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
87 ssiin 4602 . . . . 5 ((𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛) ↔ ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8886, 87sylibr 224 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛))
8915, 39syl5sseq 3686 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝐷)
9088, 89ssind 3870 . . 3 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
91 iniin1 39623 . . . . 5 (𝑍 ≠ ∅ → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9224, 91syl 17 . . . 4 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9370adantr 480 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐺 Fn 𝐷)
94 simpr 476 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9523adantr 480 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑀𝑍)
96 fveq2 6229 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝐻𝑛) = (𝐻𝑀))
9796ineq1d 3846 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝐻𝑛) ∩ 𝐷) = ((𝐻𝑀) ∩ 𝐷))
9897eleq2d 2716 . . . . . . . 8 (𝑛 = 𝑀 → (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) ↔ 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)))
9994, 95, 98eliind 39554 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷))
100 elinel2 3833 . . . . . . 7 (𝑥 ∈ ((𝐻𝑀) ∩ 𝐷) → 𝑥𝐷)
10199, 100syl 17 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
10243a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ ∈ ℝ*)
10346adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ*)
10463, 36eqeltrd 2730 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
105104rexrd 10127 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ*)
106101, 105syldan 486 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ*)
107100adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → 𝑥𝐷)
108107, 104syldan 486 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ)
109108mnfltd 11996 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → -∞ < (𝐺𝑥))
11099, 109syldan 486 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ < (𝐺𝑥))
111101, 63syldan 486 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112 nfv 1883 . . . . . . . . . . 11 𝑛𝜑
113 nfcv 2793 . . . . . . . . . . . 12 𝑛𝑥
114 nfii1 4583 . . . . . . . . . . . 12 𝑛 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
115113, 114nfel 2806 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
116112, 115nfan 1868 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
117 simpll 805 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝜑)
118 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑛𝑍)
119 eliinid 39608 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
120119adantll 750 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
121 elinel1 3832 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥 ∈ (𝐻𝑛))
1221213ad2ant3 1104 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐻𝑛))
123 elinel2 3833 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥𝐷)
124123adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
12530ancoms 468 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥𝐷) → 𝑥 ∈ dom (𝐹𝑛))
126124, 125syldan 486 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
1271263adant1 1099 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
128122, 127elind 3831 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑛) ∩ dom (𝐹𝑛)))
129823adant3 1101 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
130128, 129eleqtrrd 2733 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
13143a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
132463ad2ant1 1102 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
133 simp3 1083 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
134 elpreima 6377 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) Fn dom (𝐹𝑛) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1357, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1361353adant3 1101 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
137133, 136mpbid 222 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴)))
138137simprd 478 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
139131, 132, 138iocleubd 40104 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
140130, 139syld3an3 1411 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
141117, 118, 120, 140syl3anc 1366 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
142141ex 449 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝑛𝑍 → ((𝐹𝑛)‘𝑥) ≤ 𝐴))
143116, 142ralrimi 2986 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴)
14424adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑍 ≠ ∅)
145101, 32syldanl 735 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
146101, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
14745adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ)
148116, 144, 145, 146, 147suprleubrnmpt 39962 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴))
149143, 148mpbird 247 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴)
150111, 149eqbrtrd 4707 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ≤ 𝐴)
151102, 103, 106, 110, 150eliocd 40048 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ (-∞(,]𝐴))
15293, 101, 151elpreimad 39768 . . . . 5 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
153152ssd 39566 . . . 4 (𝜑 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15492, 153eqsstrd 3672 . . 3 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15590, 154eqssd 3653 . 2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
156 eqid 2651 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
157 fvex 6239 . . . . . . . . 9 (𝐹𝑛) ∈ V
158157dmex 7141 . . . . . . . 8 dom (𝐹𝑛) ∈ V
159158rgenw 2953 . . . . . . 7 𝑛𝑍 dom (𝐹𝑛) ∈ V
160159a1i 11 . . . . . 6 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
16124, 160iinexd 39632 . . . . 5 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
162156, 161rabexd 4846 . . . 4 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ∈ V)
1639, 162syl5eqel 2734 . . 3 (𝜑𝐷 ∈ V)
16422uzct 39546 . . . . 5 𝑍 ≼ ω
165164a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
166 smfsuplem1.h . . . . 5 (𝜑𝐻:𝑍𝑆)
167166ffvelrnda 6399 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ 𝑆)
1681, 165, 24, 167saliincl 40863 . . 3 (𝜑 𝑛𝑍 (𝐻𝑛) ∈ 𝑆)
169 eqid 2651 . . 3 ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷)
1701, 163, 168, 169elrestd 39605 . 2 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
171155, 170eqeltrd 2730 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cin 3606  wss 3607  c0 3948   ciin 4553   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  supcsup 8387  cr 9973  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  cz 11415  cuz 11725  (,]cioc 12214  t crest 16128  SAlgcsalg 40846  SMblFncsmblfn 41230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-ioo 12217  df-ioc 12218  df-ico 12219  df-rest 16130  df-salg 40847  df-smblfn 41231
This theorem is referenced by:  smfsuplem2  41339
  Copyright terms: Public domain W3C validator