Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsup Structured version   Visualization version   GIF version

Theorem smfsup 41341
 Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsup.n 𝑛𝐹
smfsup.x 𝑥𝐹
smfsup.m (𝜑𝑀 ∈ ℤ)
smfsup.z 𝑍 = (ℤ𝑀)
smfsup.s (𝜑𝑆 ∈ SAlg)
smfsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsup.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsup.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsup
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfsup.z . 2 𝑍 = (ℤ𝑀)
3 smfsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
6 nfcv 2793 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2793 . . . . 5 𝑥𝑍
8 smfsup.x . . . . . . 7 𝑥𝐹
9 nfcv 2793 . . . . . . 7 𝑥𝑚
108, 9nffv 6236 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5399 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 4581 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1883 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
14 nfcv 2793 . . . . 5 𝑥
15 nfcv 2793 . . . . . . . 8 𝑥𝑤
1610, 15nffv 6236 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
17 nfcv 2793 . . . . . . 7 𝑥
18 nfcv 2793 . . . . . . 7 𝑥𝑧
1916, 17, 18nfbr 4732 . . . . . 6 𝑥((𝐹𝑚)‘𝑤) ≤ 𝑧
207, 19nfral 2974 . . . . 5 𝑥𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
2114, 20nfrex 3036 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
22 nfcv 2793 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfsup.n . . . . . . . 8 𝑛𝐹
24 nfcv 2793 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6236 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5399 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6229 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5358 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 4590 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6229 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq1d 4695 . . . . . . . 8 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
3332ralbidv 3015 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
34 nfv 1883 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤) ≤ 𝑦
35 nfcv 2793 . . . . . . . . . . 11 𝑛𝑤
3625, 35nffv 6236 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
37 nfcv 2793 . . . . . . . . . 10 𝑛
38 nfcv 2793 . . . . . . . . . 10 𝑛𝑦
3936, 37, 38nfbr 4732 . . . . . . . . 9 𝑛((𝐹𝑚)‘𝑤) ≤ 𝑦
4027fveq1d 6231 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq1d 4695 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4234, 39, 41cbvral 3197 . . . . . . . 8 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4433, 43bitrd 268 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4544rexbidv 3081 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
46 breq2 4689 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4746ralbidv 3015 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4847cbvrexv 3202 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧)
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
5045, 49bitrd 268 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
516, 12, 13, 21, 30, 50cbvrabcsf 3601 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
525, 51eqtri 2673 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
53 smfsup.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3152 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
555, 54nfcxfr 2791 . . . 4 𝑥𝐷
56 nfcv 2793 . . . 4 𝑤𝐷
57 nfcv 2793 . . . 4 𝑤sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 16nfmpt 4779 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5400 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2793 . . . . 5 𝑥 <
6159, 14, 60nfsup 8398 . . . 4 𝑥sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 4778 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2793 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 36, 40cbvmpt 4782 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2685 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5385 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867supeq1d 8393 . . . 4 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 4781 . . 3 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2673 . 2 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfsuplem3 41340 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030  Ⅎwnfc 2780  ∀wral 2941  ∃wrex 2942  {crab 2945  ∩ ciin 4553   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ran crn 5144  ⟶wf 5922  ‘cfv 5926  supcsup 8387  ℝcr 9973   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  SAlgcsalg 40846  SMblFncsmblfn 41230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ioc 12218  df-ico 12219  df-fl 12633  df-rest 16130  df-topgen 16151  df-top 20747  df-bases 20798  df-salg 40847  df-salgen 40851  df-smblfn 41231 This theorem is referenced by:  smfsupmpt  41342  smfsupxr  41343
 Copyright terms: Public domain W3C validator