Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfres Structured version   Visualization version   GIF version

Theorem smfres 41511
Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfres.s (𝜑𝑆 ∈ SAlg)
smfres.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfres.a (𝜑𝐴𝑉)
Assertion
Ref Expression
smfres (𝜑 → (𝐹𝐴) ∈ (SMblFn‘𝑆))

Proof of Theorem smfres
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1994 . 2 𝑎𝜑
2 smfres.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss1 3979 . . . 4 (dom 𝐹𝐴) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (dom 𝐹𝐴) ⊆ dom 𝐹)
5 smfres.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2770 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 41456 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3760 . 2 (𝜑 → (dom 𝐹𝐴) ⊆ 𝑆)
92, 5, 6smff 41455 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
10 fresin 6213 . . 3 (𝐹:dom 𝐹⟶ℝ → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
119, 10syl 17 . 2 (𝜑 → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
12 ovexd 6824 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑆t dom 𝐹) ∈ V)
13 smfres.a . . . . 5 (𝜑𝐴𝑉)
1413adantr 466 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
152adantr 466 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantr 466 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
17 mnfxr 10297 . . . . . 6 -∞ ∈ ℝ*
1817a1i 11 . . . . 5 ((𝜑𝑎 ∈ ℝ) → -∞ ∈ ℝ*)
19 rexr 10286 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2019adantl 467 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2115, 16, 6, 18, 20smfpimioo 41508 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
22 eqid 2770 . . . 4 ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)
2312, 14, 21, 22elrestd 39806 . . 3 ((𝜑𝑎 ∈ ℝ) → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆t dom 𝐹) ↾t 𝐴))
249ffund 6189 . . . . . . . 8 (𝜑 → Fun 𝐹)
25 respreima 6487 . . . . . . . 8 (Fun 𝐹 → ((𝐹𝐴) “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
2624, 25syl 17 . . . . . . 7 (𝜑 → ((𝐹𝐴) “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
2726eqcomd 2776 . . . . . 6 (𝜑 → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹𝐴) “ (-∞(,)𝑎)))
2827adantr 466 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹𝐴) “ (-∞(,)𝑎)))
2911adantr 466 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
3029, 20preimaioomnf 41443 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎})
3128, 30eqtr2d 2805 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
325dmexd 39934 . . . . . . 7 (𝜑 → dom 𝐹 ∈ V)
33 restco 21188 . . . . . . 7 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴𝑉) → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
342, 32, 13, 33syl3anc 1475 . . . . . 6 (𝜑 → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
3534adantr 466 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
3635eqcomd 2776 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑆t (dom 𝐹𝐴)) = ((𝑆t dom 𝐹) ↾t 𝐴))
3731, 36eleq12d 2843 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} ∈ (𝑆t (dom 𝐹𝐴)) ↔ ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆t dom 𝐹) ↾t 𝐴)))
3823, 37mpbird 247 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} ∈ (𝑆t (dom 𝐹𝐴)))
391, 2, 8, 11, 38issmfd 41458 1 (𝜑 → (𝐹𝐴) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  cin 3720  wss 3721   cuni 4572   class class class wbr 4784  ccnv 5248  dom cdm 5249  cres 5251  cima 5252  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6792  cr 10136  -∞cmnf 10273  *cxr 10274   < clt 10275  (,)cioo 12379  t crest 16288  SAlgcsalg 41039  SMblFncsmblfn 41423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cc 9458  ax-ac2 9486  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-card 8964  df-acn 8967  df-ac 9138  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-ioo 12383  df-ico 12385  df-fl 12800  df-rest 16290  df-salg 41040  df-smblfn 41424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator