Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxr Structured version   Visualization version   GIF version

Theorem smfpimgtxr 41309
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimgtxr.x 𝑥𝐹
smfpimgtxr.s (𝜑𝑆 ∈ SAlg)
smfpimgtxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimgtxr.d 𝐷 = dom 𝐹
smfpimgtxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimgtxr (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimgtxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 4688 . . . . . 6 (𝐴 = -∞ → (𝐴 < (𝐹𝑥) ↔ -∞ < (𝐹𝑥)))
21rabbidv 3220 . . . . 5 (𝐴 = -∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
32adantl 481 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
4 smfpimgtxr.d . . . . . . . . 9 𝐷 = dom 𝐹
5 smfpimgtxr.x . . . . . . . . . 10 𝑥𝐹
65nfdm 5399 . . . . . . . . 9 𝑥dom 𝐹
74, 6nfcxfr 2791 . . . . . . . 8 𝑥𝐷
8 nfcv 2793 . . . . . . . 8 𝑦𝐷
9 nfv 1883 . . . . . . . 8 𝑦-∞ < (𝐹𝑥)
10 nfcv 2793 . . . . . . . . 9 𝑥-∞
11 nfcv 2793 . . . . . . . . 9 𝑥 <
12 nfcv 2793 . . . . . . . . . 10 𝑥𝑦
135, 12nffv 6236 . . . . . . . . 9 𝑥(𝐹𝑦)
1410, 11, 13nfbr 4732 . . . . . . . 8 𝑥-∞ < (𝐹𝑦)
15 fveq2 6229 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1615breq2d 4697 . . . . . . . 8 (𝑥 = 𝑦 → (-∞ < (𝐹𝑥) ↔ -∞ < (𝐹𝑦)))
177, 8, 9, 14, 16cbvrab 3229 . . . . . . 7 {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)}
1817a1i 11 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)})
19 nfv 1883 . . . . . . 7 𝑦𝜑
20 smfpimgtxr.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
21 smfpimgtxr.f . . . . . . . . . 10 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2220, 21, 4smff 41262 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℝ)
2322adantr 480 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝐹:𝐷⟶ℝ)
24 simpr 476 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦𝐷)
2523, 24ffvelrnd 6400 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2619, 25pimgtmnf 41253 . . . . . 6 (𝜑 → {𝑦𝐷 ∣ -∞ < (𝐹𝑦)} = 𝐷)
27 eqidd 2652 . . . . . 6 (𝜑𝐷 = 𝐷)
2818, 26, 273eqtrd 2689 . . . . 5 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
2928adantr 480 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
303, 29eqtrd 2685 . . 3 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = 𝐷)
3120, 21, 4smfdmss 41263 . . . . . . 7 (𝜑𝐷 𝑆)
3220, 31restuni4 39618 . . . . . 6 (𝜑 (𝑆t 𝐷) = 𝐷)
3332eqcomd 2657 . . . . 5 (𝜑𝐷 = (𝑆t 𝐷))
3421dmexd 39736 . . . . . . . 8 (𝜑 → dom 𝐹 ∈ V)
354, 34syl5eqel 2734 . . . . . . 7 (𝜑𝐷 ∈ V)
36 eqid 2651 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
3720, 35, 36subsalsal 40895 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
3837salunid 40889 . . . . 5 (𝜑 (𝑆t 𝐷) ∈ (𝑆t 𝐷))
3933, 38eqeltrd 2730 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
4039adantr 480 . . 3 ((𝜑𝐴 = -∞) → 𝐷 ∈ (𝑆t 𝐷))
4130, 40eqeltrd 2730 . 2 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
42 neqne 2831 . . . 4 𝐴 = -∞ → 𝐴 ≠ -∞)
4342adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
44 breq1 4688 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 < (𝐹𝑥) ↔ +∞ < (𝐹𝑥)))
4544rabbidv 3220 . . . . . . . 8 (𝐴 = +∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
4645adantl 481 . . . . . . 7 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
475, 22pimgtpnf2 41238 . . . . . . . 8 (𝜑 → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
4847adantr 480 . . . . . . 7 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
4946, 48eqtrd 2685 . . . . . 6 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = ∅)
50370sald 40886 . . . . . . 7 (𝜑 → ∅ ∈ (𝑆t 𝐷))
5150adantr 480 . . . . . 6 ((𝜑𝐴 = +∞) → ∅ ∈ (𝑆t 𝐷))
5249, 51eqeltrd 2730 . . . . 5 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5352adantlr 751 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
54 simpll 805 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑)
55 smfpimgtxr.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
5654, 55syl 17 . . . . . 6 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
57 simplr 807 . . . . . 6 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞)
58 neqne 2831 . . . . . . 7 𝐴 = +∞ → 𝐴 ≠ +∞)
5958adantl 481 . . . . . 6 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞)
6056, 57, 59xrred 39894 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ)
6120adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
6221adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
63 simpr 476 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
645, 61, 62, 4, 63smfpreimagtf 41297 . . . . 5 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6554, 60, 64syl2anc 694 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6653, 65pm2.61dan 849 . . 3 ((𝜑𝐴 ≠ -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6743, 66syldan 486 . 2 ((𝜑 ∧ ¬ 𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6841, 67pm2.61dan 849 1 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wnfc 2780  wne 2823  {crab 2945  Vcvv 3231  c0 3948   cuni 4468   class class class wbr 4685  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cr 9973  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  t crest 16128  SAlgcsalg 40846  SMblFncsmblfn 41230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-acn 8806  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ico 12219  df-fl 12633  df-rest 16130  df-salg 40847  df-smblfn 41231
This theorem is referenced by:  smfpimgtxrmpt  41313
  Copyright terms: Public domain W3C validator