![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtmpt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimgtmpt.x | ⊢ Ⅎ𝑥𝜑 |
smfpimgtmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimgtmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
smfpimgtmpt.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimgtmpt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
Ref | Expression |
---|---|
smfpimgtmpt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 4879 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | smfpimgtmpt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smfpimgtmpt.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
4 | eqid 2770 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | smfpimgtmpt.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
6 | 1, 2, 3, 4, 5 | smfpreimagtf 41490 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
7 | smfpimgtmpt.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
8 | eqid 2770 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | smfpimgtmpt.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
10 | 7, 8, 9 | dmmptdf 39929 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
11 | 1 | nfdm 5505 | . . . . . 6 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
12 | nfcv 2912 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
13 | 11, 12 | rabeqf 3339 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
14 | 10, 13 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
15 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
16 | 15, 9 | fvmpt2d 6435 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
17 | 16 | breq2d 4796 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < 𝐵)) |
18 | 7, 17 | rabbida 39789 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) |
19 | eqidd 2771 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) | |
20 | 14, 18, 19 | 3eqtrrd 2809 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
21 | 10 | eqcomd 2776 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | 21 | oveq2d 6808 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
23 | 20, 22 | eleq12d 2843 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
24 | 6, 23 | mpbird 247 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 Ⅎwnf 1855 ∈ wcel 2144 {crab 3064 class class class wbr 4784 ↦ cmpt 4861 dom cdm 5249 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 < clt 10275 ↾t crest 16288 SAlgcsalg 41039 SMblFncsmblfn 41423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cc 9458 ax-ac2 9486 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-card 8964 df-acn 8967 df-ac 9138 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-ioo 12383 df-ico 12385 df-fl 12800 df-rest 16290 df-salg 41040 df-smblfn 41424 |
This theorem is referenced by: smfrec 41510 |
Copyright terms: Public domain | W3C validator |