Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem2 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem2 41327
Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem2.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem2.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem2.a 𝐷 = dom 𝐹
smfpimbor1lem2.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem2.b 𝐵 = (SalGen‘𝐽)
smfpimbor1lem2.e (𝜑𝐸𝐵)
smfpimbor1lem2.p 𝑃 = (𝐹𝐸)
smfpimbor1lem2.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem2 (𝜑𝑃 ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐽   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝐵(𝑒)   𝑃(𝑒)   𝑇(𝑒)

Proof of Theorem smfpimbor1lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem2.p . 2 𝑃 = (𝐹𝐸)
2 smfpimbor1lem2.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 retop 22612 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2726 . . . . . . 7 𝐽 ∈ Top
54a1i 11 . . . . . 6 (𝜑𝐽 ∈ Top)
6 smfpimbor1lem2.b . . . . . 6 𝐵 = (SalGen‘𝐽)
7 smfpimbor1lem2.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
8 smfpimbor1lem2.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
9 smfpimbor1lem2.a . . . . . . 7 𝐷 = dom 𝐹
10 smfpimbor1lem2.t . . . . . . 7 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
117, 8, 9, 10smfresal 41316 . . . . . 6 (𝜑𝑇 ∈ SAlg)
127adantr 480 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑆 ∈ SAlg)
138adantr 480 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹 ∈ (SMblFn‘𝑆))
14 simpr 476 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝐽)
1512, 13, 9, 2, 14, 10smfpimbor1lem1 41326 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝑇)
1615ssd 39566 . . . . . 6 (𝜑𝐽𝑇)
17 nfcv 2793 . . . . . . . . . . . . . 14 𝑒𝑥
18 nfrab1 3152 . . . . . . . . . . . . . . 15 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
1910, 18nfcxfr 2791 . . . . . . . . . . . . . 14 𝑒𝑇
2017, 19eluni2f 39600 . . . . . . . . . . . . 13 (𝑥 𝑇 ↔ ∃𝑒𝑇 𝑥𝑒)
2120biimpi 206 . . . . . . . . . . . 12 (𝑥 𝑇 → ∃𝑒𝑇 𝑥𝑒)
2219nfuni 4474 . . . . . . . . . . . . . 14 𝑒 𝑇
2317, 22nfel 2806 . . . . . . . . . . . . 13 𝑒 𝑥 𝑇
24 nfv 1883 . . . . . . . . . . . . 13 𝑒 𝑥 ∈ ℝ
2510eleq2i 2722 . . . . . . . . . . . . . . . . . . . 20 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
2625biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
27 rabidim1 3147 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
29 elpwi 4201 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ⊆ ℝ)
3130adantr 480 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑒 ⊆ ℝ)
32 simpr 476 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑥𝑒)
3331, 32sseldd 3637 . . . . . . . . . . . . . . 15 ((𝑒𝑇𝑥𝑒) → 𝑥 ∈ ℝ)
3433ex 449 . . . . . . . . . . . . . 14 (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ))
3534a1i 11 . . . . . . . . . . . . 13 (𝑥 𝑇 → (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ)))
3623, 24, 35rexlimd 3055 . . . . . . . . . . . 12 (𝑥 𝑇 → (∃𝑒𝑇 𝑥𝑒𝑥 ∈ ℝ))
3721, 36mpd 15 . . . . . . . . . . 11 (𝑥 𝑇𝑥 ∈ ℝ)
3837rgen 2951 . . . . . . . . . 10 𝑥 𝑇𝑥 ∈ ℝ
39 dfss3 3625 . . . . . . . . . 10 ( 𝑇 ⊆ ℝ ↔ ∀𝑥 𝑇𝑥 ∈ ℝ)
4038, 39mpbir 221 . . . . . . . . 9 𝑇 ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 𝑇 ⊆ ℝ)
42 uniretop 22613 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
432eqcomi 2660 . . . . . . . . . . . . 13 (topGen‘ran (,)) = 𝐽
4443unieqi 4477 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
4542, 44eqtr2i 2674 . . . . . . . . . . 11 𝐽 = ℝ
4645a1i 11 . . . . . . . . . 10 (𝜑 𝐽 = ℝ)
4746eqcomd 2657 . . . . . . . . 9 (𝜑 → ℝ = 𝐽)
4816unissd 4494 . . . . . . . . 9 (𝜑 𝐽 𝑇)
4947, 48eqsstrd 3672 . . . . . . . 8 (𝜑 → ℝ ⊆ 𝑇)
5041, 49eqssd 3653 . . . . . . 7 (𝜑 𝑇 = ℝ)
5150, 46eqtr4d 2688 . . . . . 6 (𝜑 𝑇 = 𝐽)
525, 6, 11, 16, 51salgenss 40872 . . . . 5 (𝜑𝐵𝑇)
53 smfpimbor1lem2.e . . . . 5 (𝜑𝐸𝐵)
5452, 53sseldd 3637 . . . 4 (𝜑𝐸𝑇)
55 imaeq2 5497 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
5655eleq1d 2715 . . . . 5 (𝑒 = 𝐸 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5756, 10elrab2 3399 . . . 4 (𝐸𝑇 ↔ (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5854, 57sylib 208 . . 3 (𝜑 → (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5958simprd 478 . 2 (𝜑 → (𝐹𝐸) ∈ (𝑆t 𝐷))
601, 59syl5eqel 2734 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  wss 3607  𝒫 cpw 4191   cuni 4468  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146  cfv 5926  (class class class)co 6690  cr 9973  (,)cioo 12213  t crest 16128  topGenctg 16145  Topctop 20746  SAlgcsalg 40846  SalGencsalgen 40850  SMblFncsmblfn 41230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ico 12219  df-fl 12633  df-rest 16130  df-topgen 16151  df-top 20747  df-bases 20798  df-salg 40847  df-salgen 40851  df-smblfn 41231
This theorem is referenced by:  smfpimbor1  41328
  Copyright terms: Public domain W3C validator