Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem1 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem1 41529
 Description: Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem1.a 𝐷 = dom 𝐹
smfpimbor1lem1.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem1.8 (𝜑𝐺𝐽)
smfpimbor1lem1.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem1 (𝜑𝐺𝑇)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝑇(𝑒)   𝐺(𝑒)   𝐽(𝑒)

Proof of Theorem smfpimbor1lem1
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem1.j . . 3 𝐽 = (topGen‘ran (,))
2 smfpimbor1lem1.8 . . 3 (𝜑𝐺𝐽)
31, 2tgqioo2 40295 . 2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞))
4 simprr 813 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺 = 𝑞)
5 smfpimbor1lem1.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
6 smfpimbor1lem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
7 smfpimbor1lem1.a . . . . . . . . 9 𝐷 = dom 𝐹
8 smfpimbor1lem1.t . . . . . . . . 9 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
95, 6, 7, 8smfresal 41519 . . . . . . . 8 (𝜑𝑇 ∈ SAlg)
109adantr 472 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑇 ∈ SAlg)
11 iooex 12411 . . . . . . . . . . . 12 (,) ∈ V
1211imaexi 39932 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ∈ V
1312a1i 11 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ∈ V)
14 id 22 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
1513, 14ssexd 4957 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ V)
1615adantl 473 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ V)
17 simpr 479 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
18 ioofun 40299 . . . . . . . . . . . . . . 15 Fun (,)
1918a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → Fun (,))
20 id 22 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ ((,) “ (ℚ × ℚ)))
21 fvelima 6411 . . . . . . . . . . . . . 14 ((Fun (,) ∧ 𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2219, 20, 21syl2anc 696 . . . . . . . . . . . . 13 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2322adantl 473 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
24 id 22 . . . . . . . . . . . . . . . . . . . 20 (((,)‘𝑝) = 𝑞 → ((,)‘𝑝) = 𝑞)
2524eqcomd 2766 . . . . . . . . . . . . . . . . . . 19 (((,)‘𝑝) = 𝑞𝑞 = ((,)‘𝑝))
2625adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝))
27 1st2nd2 7373 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
2827fveq2d 6357 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩))
29 df-ov 6817 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩)
3029eqcomi 2769 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝))
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝)))
3228, 31eqtrd 2794 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3332adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3426, 33eqtrd 2794 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
35343adant1 1125 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
36 ioossre 12448 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ
37 ovex 6842 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) ∈ V
3837elpw 4308 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ↔ ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ)
3936, 38mpbir 221 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ)
415adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝑆 ∈ SAlg)
426adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝐹 ∈ (SMblFn‘𝑆))
43 xp1st 7366 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℚ)
4443qred 40122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ)
4544rexrd 10301 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ*)
4645adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (1st𝑝) ∈ ℝ*)
47 xp2nd 7367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℚ)
4847qred 40122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ)
4948rexrd 10301 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ*)
5049adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (2nd𝑝) ∈ ℝ*)
5141, 42, 7, 46, 50smfpimioo 41518 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷))
5240, 51jca 555 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
53 imaeq2 5620 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → (𝐹𝑒) = (𝐹 “ ((1st𝑝)(,)(2nd𝑝))))
5453eleq1d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5554, 8elrab2 3507 . . . . . . . . . . . . . . . . . 18 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇 ↔ (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5652, 55sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
57563adant3 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
5835, 57eqeltrd 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞𝑇)
59583exp 1113 . . . . . . . . . . . . . 14 (𝜑 → (𝑝 ∈ (ℚ × ℚ) → (((,)‘𝑝) = 𝑞𝑞𝑇)))
6059rexlimdv 3168 . . . . . . . . . . . . 13 (𝜑 → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6160adantr 472 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6223, 61mpd 15 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6362ssd 39769 . . . . . . . . . 10 (𝜑 → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6463adantr 472 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6517, 64sstrd 3754 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6616, 65elpwd 4311 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ 𝒫 𝑇)
67 ssdomg 8169 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ))))
6812, 67ax-mp 5 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ)))
69 qct 40094 . . . . . . . . . . . . 13 ℚ ≼ ω
7069, 69pm3.2i 470 . . . . . . . . . . . 12 (ℚ ≼ ω ∧ ℚ ≼ ω)
71 xpct 9049 . . . . . . . . . . . 12 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
7270, 71ax-mp 5 . . . . . . . . . . 11 (ℚ × ℚ) ≼ ω
73 fimact 9569 . . . . . . . . . . 11 (((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,) “ (ℚ × ℚ)) ≼ ω)
7472, 18, 73mp2an 710 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ ω
7574a1i 11 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ ω)
76 domtr 8176 . . . . . . . . 9 ((𝑞 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → 𝑞 ≼ ω)
7768, 75, 76syl2anc 696 . . . . . . . 8 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ω)
7877adantl 473 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ≼ ω)
7910, 66, 78salunicl 41057 . . . . . 6 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
8079adantrr 755 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝑞𝑇)
814, 80eqeltrd 2839 . . . 4 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺𝑇)
8281ex 449 . . 3 (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
8382exlimdv 2010 . 2 (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
843, 83mpd 15 1 (𝜑𝐺𝑇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632  ∃wex 1853   ∈ wcel 2139  ∃wrex 3051  {crab 3054  Vcvv 3340   ⊆ wss 3715  𝒫 cpw 4302  ⟨cop 4327  ∪ cuni 4588   class class class wbr 4804   × cxp 5264  ◡ccnv 5265  dom cdm 5266  ran crn 5267   “ cima 5269  Fun wfun 6043  ‘cfv 6049  (class class class)co 6814  ωcom 7231  1st c1st 7332  2nd c2nd 7333   ≼ cdom 8121  ℝcr 10147  ℝ*cxr 10285  ℚcq 12001  (,)cioo 12388   ↾t crest 16303  topGenctg 16320  SAlgcsalg 41049  SMblFncsmblfn 41433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cc 9469  ax-ac2 9497  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-ac 9149  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-ioo 12392  df-ico 12394  df-fl 12807  df-rest 16305  df-topgen 16326  df-bases 20972  df-salg 41050  df-smblfn 41434 This theorem is referenced by:  smfpimbor1lem2  41530
 Copyright terms: Public domain W3C validator