Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem4 Structured version   Visualization version   GIF version

Theorem smfmullem4 40338
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem4.x 𝑥𝜑
smfmullem4.s (𝜑𝑆 ∈ SAlg)
smfmullem4.a (𝜑𝐴𝑉)
smfmullem4.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmullem4.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmullem4.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmullem4.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfmullem4.r (𝜑𝑅 ∈ ℝ)
smfmullem4.k 𝐾 = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem4.e 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
Assertion
Ref Expression
smfmullem4 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑞,𝑢,𝑣,𝑥   𝐵,𝑞,𝑢,𝑣   𝐶,𝑞,𝑢,𝑣,𝑥   𝐷,𝑞,𝑢,𝑣   𝐾,𝑞,𝑥   𝑅,𝑞,𝑢,𝑣   𝑆,𝑞   𝜑,𝑞,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑣,𝑢)   𝐸(𝑥,𝑣,𝑢,𝑞)   𝐾(𝑣,𝑢)   𝑉(𝑥,𝑣,𝑢,𝑞)

Proof of Theorem smfmullem4
StepHypRef Expression
1 smfmullem4.x . . . . 5 𝑥𝜑
2 smfmullem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
323ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑅 ∈ ℝ)
4 smfmullem4.k . . . . . . . . 9 𝐾 = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
5 inss1 3817 . . . . . . . . . . . . 13 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
76sselda 3588 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
8 smfmullem4.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
97, 8syldan 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
1093adant3 1079 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐵 ∈ ℝ)
11 elinel2 3784 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1211adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
13 smfmullem4.d . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
15143adant3 1079 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐷 ∈ ℝ)
16 simp3 1061 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
17 eqid 2621 . . . . . . . . 9 ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))) = ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))
18 eqid 2621 . . . . . . . . 9 if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))) = if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))))
193, 4, 10, 15, 16, 17, 18smfmullem3 40337 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
20 rabid 3110 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
2120bicomi 214 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) ↔ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2221biimpi 206 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2322adantll 749 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2423adantlr 750 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
25 smfmullem4.e . . . . . . . . . . . . . . . . 17 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2625a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}))
27 inrab 3881 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
28 smfmullem4.s . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ SAlg)
29 smfmullem4.a . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐴𝑉)
3029, 6ssexd 4775 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴𝐶) ∈ V)
31 eqid 2621 . . . . . . . . . . . . . . . . . . . . 21 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
3228, 30, 31subsalsal 39914 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
3332adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → (𝑆t (𝐴𝐶)) ∈ SAlg)
34 nfv 1840 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑞𝐾
351, 34nfan 1825 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝜑𝑞𝐾)
3628adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → 𝑆 ∈ SAlg)
3730adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝐴𝐶) ∈ V)
389adantlr 750 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
39 smfmullem4.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4028, 39, 6sssmfmpt 40296 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4140adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
42 ssrab2 3672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} ⊆ (ℚ ↑𝑚 (0...3))
434, 42eqsstri 3620 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐾 ⊆ (ℚ ↑𝑚 (0...3))
44 reex 9987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ∈ V
45 qssre 11758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℚ ⊆ ℝ
46 mapss 7860 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑𝑚 (0...3)) ⊆ (ℝ ↑𝑚 (0...3)))
4744, 45, 46mp2an 707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ↑𝑚 (0...3)) ⊆ (ℝ ↑𝑚 (0...3))
4843, 47sstri 3597 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾 ⊆ (ℝ ↑𝑚 (0...3))
49 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾𝑞𝐾)
5048, 49sseldi 3586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾𝑞 ∈ (ℝ ↑𝑚 (0...3)))
5144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → ℝ ∈ V)
52 ovexd 6645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → (0...3) ∈ V)
5351, 52elmapd 7831 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾 → (𝑞 ∈ (ℝ ↑𝑚 (0...3)) ↔ 𝑞:(0...3)⟶ℝ))
5450, 53mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾𝑞:(0...3)⟶ℝ)
55 0z 11348 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℤ
56 3z 11370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ∈ ℤ
57 0re 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ ℝ
58 3re 11054 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
59 3pos 11074 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 < 3
6057, 58, 59ltleii 10120 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ 3
6155, 56, 603pm3.2i 1237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)
62 eluz2 11653 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3))
6361, 62mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ (ℤ‘0)
64 eluzfz1 12306 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 0 ∈ (0...3))
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...3)
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 0 ∈ (0...3))
6754, 66ffvelrnd 6326 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘0) ∈ ℝ)
6867adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ)
6968rexrd 10049 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ*)
70 0le1 10511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
71 1re 9999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 ∈ ℝ
72 1lt3 11156 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 3
7371, 58, 72ltleii 10120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ≤ 3
7470, 73pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 1 ∧ 1 ≤ 3)
75 1z 11367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℤ
76 elfz 12290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3)))
7775, 55, 56, 76mp3an 1421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3))
7874, 77mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ (0...3)
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 1 ∈ (0...3))
8054, 79ffvelrnd 6326 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘1) ∈ ℝ)
8180adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ)
8281rexrd 10049 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ*)
8335, 36, 37, 38, 41, 69, 82smfpimioompt 40330 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∈ (𝑆t (𝐴𝐶)))
8414adantlr 750 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
85 smfmullem4.n . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
861, 12ssdf 38769 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
8728, 85, 86sssmfmpt 40296 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
8887adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
89 0le2 11071 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 2
90 2re 11050 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
91 2lt3 11155 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 < 3
9290, 58, 91ltleii 10120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≤ 3
9389, 92pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 2 ∧ 2 ≤ 3)
94 2z 11369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℤ
95 elfz 12290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3)))
9694, 55, 56, 95mp3an 1421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3))
9793, 96mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ (0...3)
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 2 ∈ (0...3))
9954, 98ffvelrnd 6326 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘2) ∈ ℝ)
10099adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ)
101100rexrd 10049 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ*)
102 eluzfz2 12307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 3 ∈ (0...3))
10363, 102ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (0...3)
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 3 ∈ (0...3))
10554, 104ffvelrnd 6326 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘3) ∈ ℝ)
106105adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ)
107106rexrd 10049 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ*)
10835, 36, 37, 84, 88, 101, 107smfpimioompt 40330 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))} ∈ (𝑆t (𝐴𝐶)))
10933, 83, 108salincld 39907 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐾) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) ∈ (𝑆t (𝐴𝐶)))
11027, 109syl5eqelr 2703 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ (𝑆t (𝐴𝐶)))
111110elexd 3204 . . . . . . . . . . . . . . . 16 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ V)
11226, 111fvmpt2d 6260 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐾) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
113112eqcomd 2627 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
114113adantlr 750 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
115114adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
11624, 115eleqtrd 2700 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ (𝐸𝑞))
117116ex 450 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
1181173adantl3 1217 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
119118reximdva 3013 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞)))
12019, 119mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
121 eliun 4497 . . . . . . 7 (𝑥 𝑞𝐾 (𝐸𝑞) ↔ ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
122120, 121sylibr 224 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑥 𝑞𝐾 (𝐸𝑞))
1231223exp 1261 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐶) → ((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞))))
1241, 123ralrimi 2953 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
12534nfci 2751 . . . . . 6 𝑥𝐾
126 nfrab1 3115 . . . . . . . . 9 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
127125, 126nfmpt 4716 . . . . . . . 8 𝑥(𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
12825, 127nfcxfr 2759 . . . . . . 7 𝑥𝐸
129 nfcv 2761 . . . . . . 7 𝑥𝑞
130128, 129nffv 6165 . . . . . 6 𝑥(𝐸𝑞)
131125, 130nfiun 4521 . . . . 5 𝑥 𝑞𝐾 (𝐸𝑞)
132131rabssf 38827 . . . 4 ({𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
133124, 132sylibr 224 . . 3 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞))
134 ssrab2 3672 . . . . . . 7 {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ⊆ (𝐴𝐶)
135112, 134syl6eqss 3640 . . . . . 6 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ (𝐴𝐶))
136 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ (𝐸𝑞))
137112adantr 481 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
138136, 137eleqtrd 2700 . . . . . . . . . . 11 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
139 rabidim2 38806 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
140138, 139syl 17 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
141140simprd 479 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))
142140simpld 475 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)))
14349, 4syl6eleq 2708 . . . . . . . . . . . 12 (𝑞𝐾𝑞 ∈ {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅})
144 rabidim2 38806 . . . . . . . . . . . 12 (𝑞 ∈ {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
145143, 144syl 17 . . . . . . . . . . 11 (𝑞𝐾 → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
146145ad2antlr 762 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
147 oveq1 6622 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (𝑢 · 𝑣) = (𝐵 · 𝑣))
148147breq1d 4633 . . . . . . . . . . . 12 (𝑢 = 𝐵 → ((𝑢 · 𝑣) < 𝑅 ↔ (𝐵 · 𝑣) < 𝑅))
149148ralbidv 2982 . . . . . . . . . . 11 (𝑢 = 𝐵 → (∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅))
150149rspcva 3297 . . . . . . . . . 10 ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
151142, 146, 150syl2anc 692 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
152 oveq2 6623 . . . . . . . . . . 11 (𝑣 = 𝐷 → (𝐵 · 𝑣) = (𝐵 · 𝐷))
153152breq1d 4633 . . . . . . . . . 10 (𝑣 = 𝐷 → ((𝐵 · 𝑣) < 𝑅 ↔ (𝐵 · 𝐷) < 𝑅))
154153rspcva 3297 . . . . . . . . 9 ((𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)) ∧ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
155141, 151, 154syl2anc 692 . . . . . . . 8 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 · 𝐷) < 𝑅)
156155ex 450 . . . . . . 7 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐸𝑞) → (𝐵 · 𝐷) < 𝑅))
15735, 156ralrimi 2953 . . . . . 6 ((𝜑𝑞𝐾) → ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅)
158135, 157jca 554 . . . . 5 ((𝜑𝑞𝐾) → ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
159 nfcv 2761 . . . . . 6 𝑥(𝐴𝐶)
160130, 159ssrabf 38822 . . . . 5 ((𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ↔ ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
161158, 160sylibr 224 . . . 4 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
162161iunssd 38793 . . 3 (𝜑 𝑞𝐾 (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
163133, 162eqssd 3605 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} = 𝑞𝐾 (𝐸𝑞))
164 ovex 6643 . . . . . . 7 (ℚ ↑𝑚 (0...3)) ∈ V
165 ssdomg 7961 . . . . . . 7 ((ℚ ↑𝑚 (0...3)) ∈ V → (𝐾 ⊆ (ℚ ↑𝑚 (0...3)) → 𝐾 ≼ (ℚ ↑𝑚 (0...3))))
166164, 165ax-mp 5 . . . . . 6 (𝐾 ⊆ (ℚ ↑𝑚 (0...3)) → 𝐾 ≼ (ℚ ↑𝑚 (0...3)))
16743, 166ax-mp 5 . . . . 5 𝐾 ≼ (ℚ ↑𝑚 (0...3))
168 qct 39077 . . . . . . . 8 ℚ ≼ ω
169168a1i 11 . . . . . . 7 (⊤ → ℚ ≼ ω)
170 fzfid 12728 . . . . . . 7 (⊤ → (0...3) ∈ Fin)
171169, 170mpct 38902 . . . . . 6 (⊤ → (ℚ ↑𝑚 (0...3)) ≼ ω)
172171trud 1490 . . . . 5 (ℚ ↑𝑚 (0...3)) ≼ ω
173 domtr 7969 . . . . 5 ((𝐾 ≼ (ℚ ↑𝑚 (0...3)) ∧ (ℚ ↑𝑚 (0...3)) ≼ ω) → 𝐾 ≼ ω)
174167, 172, 173mp2an 707 . . . 4 𝐾 ≼ ω
175174a1i 11 . . 3 (𝜑𝐾 ≼ ω)
176110, 25fmptd 6351 . . . 4 (𝜑𝐸:𝐾⟶(𝑆t (𝐴𝐶)))
177176ffvelrnda 6325 . . 3 ((𝜑𝑞𝐾) → (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
17832, 175, 177saliuncl 39879 . 2 (𝜑 𝑞𝐾 (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
179163, 178eqeltrd 2698 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wtru 1481  wnf 1705  wcel 1987  wral 2908  wrex 2909  {crab 2912  Vcvv 3190  cin 3559  wss 3560  ifcif 4064   ciun 4492   class class class wbr 4623  cmpt 4683  wf 5853  cfv 5857  (class class class)co 6615  ωcom 7027  𝑚 cmap 7817  cdom 7913  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cle 10035  cmin 10226   / cdiv 10644  2c2 11030  3c3 11031  cz 11337  cuz 11647  cq 11748  (,)cioo 12133  ...cfz 12284  abscabs 13924  t crest 16021  SAlgcsalg 39865  SMblFncsmblfn 40246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cc 9217  ax-ac2 9245  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-ac 8899  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-word 13254  df-concat 13256  df-s1 13257  df-s2 13546  df-s3 13547  df-s4 13548  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-rest 16023  df-salg 39866  df-smblfn 40247
This theorem is referenced by:  smfmul  40339
  Copyright terms: Public domain W3C validator