Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem3 Structured version   Visualization version   GIF version

Theorem smfmullem3 41423
Description: The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem3.r (𝜑𝑅 ∈ ℝ)
smfmullem3.k 𝐾 = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem3.u (𝜑𝑈 ∈ ℝ)
smfmullem3.v (𝜑𝑉 ∈ ℝ)
smfmullem3.l (𝜑 → (𝑈 · 𝑉) < 𝑅)
smfmullem3.x 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
smfmullem3.y 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
Assertion
Ref Expression
smfmullem3 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Distinct variable groups:   𝑅,𝑞   𝑈,𝑞,𝑢,𝑣   𝑉,𝑞,𝑢,𝑣   𝑢,𝑌,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑣,𝑢)   𝐾(𝑣,𝑢,𝑞)   𝑋(𝑣,𝑢,𝑞)   𝑌(𝑞)

Proof of Theorem smfmullem3
Dummy variables 𝑝 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmullem3.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 smfmullem3.y . . . . . . . 8 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
32a1i 11 . . . . . . 7 (𝜑𝑌 = if(1 ≤ 𝑋, 1, 𝑋))
4 1rp 11950 . . . . . . . . 9 1 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
6 smfmullem3.x . . . . . . . . . 10 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
76a1i 11 . . . . . . . . 9 (𝜑𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))))
8 smfmullem3.l . . . . . . . . . . 11 (𝜑 → (𝑈 · 𝑉) < 𝑅)
9 smfmullem3.v . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
101, 9remulcld 10183 . . . . . . . . . . . 12 (𝜑 → (𝑈 · 𝑉) ∈ ℝ)
11 smfmullem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
12 difrp 11982 . . . . . . . . . . . 12 (((𝑈 · 𝑉) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
1310, 11, 12syl2anc 696 . . . . . . . . . . 11 (𝜑 → ((𝑈 · 𝑉) < 𝑅 ↔ (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+))
148, 13mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑅 − (𝑈 · 𝑉)) ∈ ℝ+)
15 1re 10152 . . . . . . . . . . . . 13 1 ∈ ℝ
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
171recnd 10181 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂ)
1817abscld 14295 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑈) ∈ ℝ)
199recnd 10181 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ ℂ)
2019abscld 14295 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑉) ∈ ℝ)
2118, 20readdcld 10182 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ)
2216, 21readdcld 10182 . . . . . . . . . . 11 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ)
23 0re 10153 . . . . . . . . . . . . 13 0 ∈ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
255rpgt0d 11989 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
26 0red 10154 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
2717absge0d 14303 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (abs‘𝑈))
2819absge0d 14303 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (abs‘𝑉))
2918, 20addge01d 10728 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))))
3028, 29mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))
3126, 18, 21, 27, 30letrd 10307 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉)))
3216, 21addge01d 10728 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉)))))
3331, 32mpbid 222 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))
3424, 16, 22, 25, 33ltletrd 10310 . . . . . . . . . . 11 (𝜑 → 0 < (1 + ((abs‘𝑈) + (abs‘𝑉))))
3522, 34elrpd 11983 . . . . . . . . . 10 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ+)
3614, 35rpdivcld 12003 . . . . . . . . 9 (𝜑 → ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈ ℝ+)
377, 36eqeltrd 2803 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
385, 37ifcld 4239 . . . . . . 7 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈ ℝ+)
393, 38eqeltrd 2803 . . . . . 6 (𝜑𝑌 ∈ ℝ+)
4039rpred 11986 . . . . 5 (𝜑𝑌 ∈ ℝ)
411, 40resubcld 10571 . . . 4 (𝜑 → (𝑈𝑌) ∈ ℝ)
4241rexrd 10202 . . 3 (𝜑 → (𝑈𝑌) ∈ ℝ*)
431rexrd 10202 . . 3 (𝜑𝑈 ∈ ℝ*)
441, 39ltsubrpd 12018 . . 3 (𝜑 → (𝑈𝑌) < 𝑈)
4542, 43, 44qelioo 40193 . 2 (𝜑 → ∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
461, 40readdcld 10182 . . . . . . . 8 (𝜑 → (𝑈 + 𝑌) ∈ ℝ)
4746rexrd 10202 . . . . . . 7 (𝜑 → (𝑈 + 𝑌) ∈ ℝ*)
481, 39ltaddrpd 12019 . . . . . . 7 (𝜑𝑈 < (𝑈 + 𝑌))
4943, 47, 48qelioo 40193 . . . . . 6 (𝜑 → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
5049ad2antrr 764 . . . . 5 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
51 simp-4l 825 . . . . . . . . 9 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝜑)
529, 40resubcld 10571 . . . . . . . . . . 11 (𝜑 → (𝑉𝑌) ∈ ℝ)
5352rexrd 10202 . . . . . . . . . 10 (𝜑 → (𝑉𝑌) ∈ ℝ*)
549rexrd 10202 . . . . . . . . . 10 (𝜑𝑉 ∈ ℝ*)
559, 39ltsubrpd 12018 . . . . . . . . . 10 (𝜑 → (𝑉𝑌) < 𝑉)
5653, 54, 55qelioo 40193 . . . . . . . . 9 (𝜑 → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5751, 56syl 17 . . . . . . . 8 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
5851ad2antrr 764 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → 𝜑)
599, 40readdcld 10182 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 + 𝑌) ∈ ℝ)
6059rexrd 10202 . . . . . . . . . . . . 13 (𝜑 → (𝑉 + 𝑌) ∈ ℝ*)
619, 39ltaddrpd 12019 . . . . . . . . . . . . 13 (𝜑𝑉 < (𝑉 + 𝑌))
6254, 60, 61qelioo 40193 . . . . . . . . . . . 12 (𝜑 → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6358, 62syl 17 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
6411ad8antr 787 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑅 ∈ ℝ)
65 smfmullem3.k . . . . . . . . . . . . . 14 𝐾 = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
661ad8antr 787 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑈 ∈ ℝ)
679ad8antr 787 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑉 ∈ ℝ)
688ad8antr 787 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → (𝑈 · 𝑉) < 𝑅)
69 simp-8r 843 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ℚ)
70 simp-6r 835 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ ℚ)
71 simp-4r 827 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ℚ)
72 simplr 809 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ ℚ)
73 simp-7r 839 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑝 ∈ ((𝑈𝑌)(,)𝑈))
74 simp-5r 831 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)))
75 simpllr 817 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑠 ∈ ((𝑉𝑌)(,)𝑉))
76 simpr 479 . . . . . . . . . . . . . 14 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)))
7764, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 6, 2smfmullem2 41422 . . . . . . . . . . . . 13 (((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) ∧ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
7877ex 449 . . . . . . . . . . . 12 ((((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) ∧ 𝑧 ∈ ℚ) → (𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
7978rexlimdva 3133 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → (∃𝑧 ∈ ℚ 𝑧 ∈ (𝑉(,)(𝑉 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8063, 79mpd 15 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) ∧ 𝑠 ∈ ((𝑉𝑌)(,)𝑉)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8180ex 449 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) ∧ 𝑠 ∈ ℚ) → (𝑠 ∈ ((𝑉𝑌)(,)𝑉) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8281rexlimdva 3133 . . . . . . . 8 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → (∃𝑠 ∈ ℚ 𝑠 ∈ ((𝑉𝑌)(,)𝑉) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8357, 82mpd 15 . . . . . . 7 (((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) ∧ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌))) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8483ex 449 . . . . . 6 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) ∧ 𝑟 ∈ ℚ) → (𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8584rexlimdva 3133 . . . . 5 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → (∃𝑟 ∈ ℚ 𝑟 ∈ (𝑈(,)(𝑈 + 𝑌)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8650, 85mpd 15 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑝 ∈ ((𝑈𝑌)(,)𝑈)) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
8786ex 449 . . 3 ((𝜑𝑝 ∈ ℚ) → (𝑝 ∈ ((𝑈𝑌)(,)𝑈) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8887rexlimdva 3133 . 2 (𝜑 → (∃𝑝 ∈ ℚ 𝑝 ∈ ((𝑈𝑌)(,)𝑈) → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
8945, 88mpd 15 1 (𝜑 → ∃𝑞𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wral 3014  wrex 3015  {crab 3018  ifcif 4194   class class class wbr 4760  cfv 6001  (class class class)co 6765  𝑚 cmap 7974  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  2c2 11183  3c3 11184  cq 11902  +crp 11946  (,)cioo 12289  ...cfz 12440  abscabs 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-inf 8465  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-ioo 12293  df-icc 12296  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-word 13406  df-concat 13408  df-s1 13409  df-s2 13714  df-s3 13715  df-s4 13716  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096
This theorem is referenced by:  smfmullem4  41424
  Copyright terms: Public domain W3C validator