Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmul Structured version   Visualization version   GIF version

Theorem smfmul 41516
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmul.x 𝑥𝜑
smfmul.s (𝜑𝑆 ∈ SAlg)
smfmul.a (𝜑𝐴𝑉)
smfmul.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmul.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmul.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmul.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfmul (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfmul
Dummy variables 𝑎 𝑝 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmul.x . 2 𝑥𝜑
2 nfv 1994 . 2 𝑎𝜑
3 smfmul.s . 2 (𝜑𝑆 ∈ SAlg)
4 elinel1 3948 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
54adantl 467 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
61, 5ssdf 39762 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 eqid 2770 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfmul.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 39929 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2776 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfmul.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2770 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 41456 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3786 . . 3 (𝜑𝐴 𝑆)
156, 14sstrd 3760 . 2 (𝜑 → (𝐴𝐶) ⊆ 𝑆)
165, 8syldan 571 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
17 elinel2 3949 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1817adantl 467 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
19 smfmul.d . . . 4 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
2018, 19syldan 571 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
2116, 20remulcld 10271 . 2 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 · 𝐷) ∈ ℝ)
22 nfv 1994 . . . 4 𝑥 𝑎 ∈ ℝ
231, 22nfan 1979 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
243adantr 466 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
25 smfmul.a . . . 4 (𝜑𝐴𝑉)
2625adantr 466 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
278adantlr 686 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
2819adantlr 686 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐷 ∈ ℝ)
2911adantr 466 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
30 smfmul.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
3130adantr 466 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
32 simpr 471 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
33 fveq1 6331 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2))
34 fveq1 6331 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3))
3533, 34oveq12d 6810 . . . . . . 7 (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3)))
3635raleqdv 3292 . . . . . 6 (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
3736ralbidv 3134 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
38 fveq1 6331 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0))
39 fveq1 6331 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1))
4038, 39oveq12d 6810 . . . . . 6 (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1)))
4140raleqdv 3292 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4237, 41bitrd 268 . . . 4 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4342cbvrabv 3348 . . 3 {𝑝 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎}
44 eqid 2770 . . 3 (𝑞 ∈ {𝑝 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
4523, 24, 26, 27, 28, 29, 31, 32, 43, 44smfmullem4 41515 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆t (𝐴𝐶)))
461, 2, 3, 15, 21, 45issmfdmpt 41471 1 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wnf 1855  wcel 2144  wral 3060  {crab 3064  cin 3720   cuni 4572   class class class wbr 4784  cmpt 4861  dom cdm 5249  cfv 6031  (class class class)co 6792  𝑚 cmap 8008  cr 10136  0cc0 10137  1c1 10138   · cmul 10142   < clt 10275  2c2 11271  3c3 11272  cq 11990  (,)cioo 12379  ...cfz 12532  SAlgcsalg 41039  SMblFncsmblfn 41423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cc 9458  ax-ac2 9486  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-omul 7717  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-ac 9138  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-s2 13801  df-s3 13802  df-s4 13803  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-rest 16290  df-salg 41040  df-smblfn 41424
This theorem is referenced by:  smfmulc1  41517  smfdiv  41518
  Copyright terms: Public domain W3C validator