Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem6 Structured version   Visualization version   GIF version

Theorem smflimsuplem6 41551
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem6.a 𝑛𝜑
smflimsuplem6.b 𝑚𝜑
smflimsuplem6.m (𝜑𝑀 ∈ ℤ)
smflimsuplem6.z 𝑍 = (ℤ𝑀)
smflimsuplem6.s (𝜑𝑆 ∈ SAlg)
smflimsuplem6.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem6.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem6.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem6.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem6.n (𝜑𝑁𝑍)
smflimsuplem6.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem6 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem6
StepHypRef Expression
1 smflimsuplem6.z . . . . 5 𝑍 = (ℤ𝑀)
21fvexi 6343 . . . 4 𝑍 ∈ V
32a1i 11 . . 3 (𝜑𝑍 ∈ V)
43mptexd 6631 . 2 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ V)
5 fvexd 6344 . 2 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
6 smflimsuplem6.a . . . 4 𝑛𝜑
7 smflimsuplem6.b . . . 4 𝑚𝜑
8 smflimsuplem6.m . . . 4 (𝜑𝑀 ∈ ℤ)
9 smflimsuplem6.s . . . 4 (𝜑𝑆 ∈ SAlg)
10 smflimsuplem6.f . . . 4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
11 smflimsuplem6.e . . . 4 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 smflimsuplem6.h . . . 4 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
13 smflimsuplem6.r . . . 4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
14 smflimsuplem6.n . . . 4 (𝜑𝑁𝑍)
15 smflimsuplem6.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
166, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15smflimsuplem5 41550 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
17 fvexd 6344 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
181eluzelz2 40143 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
1914, 18syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
20 eqid 2771 . . . 4 (ℤ𝑁) = (ℤ𝑁)
211eleq2i 2842 . . . . . . . 8 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
2221biimpi 206 . . . . . . 7 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
23 uzss 11909 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
2422, 23syl 17 . . . . . 6 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
2524, 1syl6sseqr 3801 . . . . 5 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
2614, 25syl 17 . . . 4 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
27 ssid 3773 . . . . 5 (ℤ𝑁) ⊆ (ℤ𝑁)
2827a1i 11 . . . 4 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
29 fvexd 6344 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) ∈ V)
306, 3, 17, 19, 20, 26, 28, 29climeqmpt 40447 . . 3 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋)))))
3116, 30mpbird 247 . 2 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
32 breldmg 5468 . 2 (((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ V ∧ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋)))) → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
334, 5, 31, 32syl3anc 1476 1 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑋)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wnf 1856  wcel 2145  {crab 3065  Vcvv 3351  wss 3723   ciin 4655   class class class wbr 4786  cmpt 4863  dom cdm 5249  ran crn 5250  wf 6027  cfv 6031  supcsup 8502  cr 10137  *cxr 10275   < clt 10276  cz 11579  cuz 11888  lim supclsp 14409  cli 14423  SAlgcsalg 41045  SMblFncsmblfn 41429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-ioo 12384  df-ico 12386  df-fz 12534  df-fl 12801  df-ceil 12802  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-smblfn 41430
This theorem is referenced by:  smflimsuplem7  41552
  Copyright terms: Public domain W3C validator