Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem5 Structured version   Visualization version   GIF version

Theorem smflimsuplem5 41351
 Description: 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem5.a 𝑛𝜑
smflimsuplem5.b 𝑚𝜑
smflimsuplem5.m (𝜑𝑀 ∈ ℤ)
smflimsuplem5.z 𝑍 = (ℤ𝑀)
smflimsuplem5.s (𝜑𝑆 ∈ SAlg)
smflimsuplem5.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem5.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem5.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem5.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem5.n (𝜑𝑁𝑍)
smflimsuplem5.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem5.a . . 3 𝑛𝜑
2 smflimsuplem5.n . . . . . . . 8 (𝜑𝑁𝑍)
3 smflimsuplem5.z . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
43eleq2i 2722 . . . . . . . . . . 11 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 206 . . . . . . . . . 10 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 uzss 11746 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
75, 6syl 17 . . . . . . . . 9 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
87, 3syl6sseqr 3685 . . . . . . . 8 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
92, 8syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
109sselda 3636 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
11 smflimsuplem5.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 nfcv 2793 . . . . . . . . . . 11 𝑥𝑍
13 nfrab1 3152 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
1412, 13nfmpt 4779 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1511, 14nfcxfr 2791 . . . . . . . . 9 𝑥𝐸
16 nfcv 2793 . . . . . . . . 9 𝑥𝑛
1715, 16nffv 6236 . . . . . . . 8 𝑥(𝐸𝑛)
18 fvex 6239 . . . . . . . 8 (𝐸𝑛) ∈ V
1917, 18mptexf 39758 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
2019a1i 11 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
21 smflimsuplem5.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2221fvmpt2 6330 . . . . . 6 ((𝑛𝑍 ∧ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2310, 20, 22syl2anc 694 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2423fveq1d 6231 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋))
25 nfcv 2793 . . . . . 6 𝑦(𝐸𝑛)
26 nfcv 2793 . . . . . 6 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
27 nfcv 2793 . . . . . 6 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
28 fveq2 6229 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2928mpteq2dv 4778 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3029rneqd 5385 . . . . . . 7 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3130supeq1d 8393 . . . . . 6 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
3217, 25, 26, 27, 31cbvmptf 4781 . . . . 5 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
33 simpl 472 . . . . . . . . 9 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑋)
3433fveq2d 6233 . . . . . . . 8 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
3534mpteq2dva 4777 . . . . . . 7 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3635rneqd 5385 . . . . . 6 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3736supeq1d 8393 . . . . 5 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
3837eleq1d 2715 . . . . . . . 8 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
39 uzss 11746 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ⊆ (ℤ𝑁))
40 iinss1 4565 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4139, 40syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4241adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
43 smflimsuplem5.x . . . . . . . . . 10 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4443adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4542, 44sseldd 3637 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
46 smflimsuplem5.b . . . . . . . . . . 11 𝑚𝜑
47 nfv 1883 . . . . . . . . . . 11 𝑚 𝑛 ∈ (ℤ𝑁)
4846, 47nfan 1868 . . . . . . . . . 10 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
49 eqid 2651 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
50 simpll 805 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
5139sselda 3636 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
5251adantll 750 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
53 smflimsuplem5.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
5453adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
55 simpl 472 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝜑)
569sselda 3636 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
57 smflimsuplem5.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5857ffvelrnda 6399 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
5955, 56, 58syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
60 eqid 2651 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
6154, 59, 60smff 41262 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
62 eliin 4557 . . . . . . . . . . . . . . . 16 (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6343, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6443, 63mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
6564adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
66 simpr 476 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
67 rspa 2959 . . . . . . . . . . . . 13 ((∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6865, 66, 67syl2anc 694 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6961, 68ffvelrnd 6400 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
7050, 52, 69syl2anc 694 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
71 eluzelz 11735 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
7271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
73 smflimsuplem5.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
75 fvex 6239 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑋) ∈ V
7675a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
7748, 72, 74, 49, 3, 70, 76limsupequzmpt 40279 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
78 smflimsuplem5.r . . . . . . . . . . . . 13 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8077, 79eqeltrd 2730 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8180renepnfd 10128 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
8248, 49, 70, 81limsupubuzmpt 40269 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
83 uzid2 39943 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ (ℤ𝑛))
84 ne0i 3954 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
8583, 84syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ≠ ∅)
8685adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑛) ≠ ∅)
8748, 86, 70supxrre3rnmpt 39969 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
8882, 87mpbird 247 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
8938, 45, 88elrabd 3398 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
90 simpl 472 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑥)
9190fveq2d 6233 . . . . . . . . . . . 12 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑥))
9291mpteq2dva 4777 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9392rneqd 5385 . . . . . . . . . 10 (𝑦 = 𝑥 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9493supeq1d 8393 . . . . . . . . 9 (𝑦 = 𝑥 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9594eleq1d 2715 . . . . . . . 8 (𝑦 = 𝑥 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
9695cbvrabv 3230 . . . . . . 7 {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
9789, 96syl6eleq 2740 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
98 eqid 2651 . . . . . . . 8 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
99 fvex 6239 . . . . . . . . . . . . 13 (𝐹𝑚) ∈ V
10099dmex 7141 . . . . . . . . . . . 12 dom (𝐹𝑚) ∈ V
101100rgenw 2953 . . . . . . . . . . 11 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
102101a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10385, 102iinexd 39632 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
104103adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10598, 104rabexd 4846 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10611fvmpt2 6330 . . . . . . 7 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10710, 105, 106syl2anc 694 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10897, 107eleqtrrd 2733 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ (𝐸𝑛))
10988elexd 3245 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ V)
11032, 37, 108, 109fvmptd3 39761 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
11124, 110eqtrd 2685 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
1121, 111mpteq2da 4776 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )))
1133eluzelz2 39940 . . . 4 (𝑁𝑍𝑁 ∈ ℤ)
1142, 113syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
115 eqid 2651 . . 3 (ℤ𝑁) = (ℤ𝑁)
11675a1i 11 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ V)
11775a1i 11 . . . . 5 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
11846, 114, 73, 115, 3, 116, 117limsupequzmpt 40279 . . . 4 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
119118, 78eqeltrd 2730 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
12046, 114, 115, 69, 119supcnvlimsupmpt 40291 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
121112, 120eqbrtrd 4707 1 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945  Vcvv 3231   ⊆ wss 3607  ∅c0 3948  ∩ ciin 4553   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ran crn 5144  ⟶wf 5922  ‘cfv 5926  supcsup 8387  ℝcr 9973  ℝ*cxr 10111   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  lim supclsp 14245   ⇝ cli 14259  SAlgcsalg 40846  SMblFncsmblfn 41230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ico 12219  df-fz 12365  df-fl 12633  df-ceil 12634  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-smblfn 41231 This theorem is referenced by:  smflimsuplem6  41352  smflimsuplem8  41354
 Copyright terms: Public domain W3C validator