Proof of Theorem smflimsuplem3
Step | Hyp | Ref
| Expression |
1 | | nfv 1992 |
. 2
⊢
Ⅎ𝑛𝜑 |
2 | | nfv 1992 |
. 2
⊢
Ⅎ𝑥𝜑 |
3 | | nfv 1992 |
. 2
⊢
Ⅎ𝑘𝜑 |
4 | | smflimsuplem3.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | smflimsuplem3.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | | fvex 6362 |
. . . 4
⊢ (𝐻‘𝑛) ∈ V |
7 | 6 | dmex 7264 |
. . 3
⊢ dom
(𝐻‘𝑛) ∈ V |
8 | 7 | a1i 11 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐻‘𝑛) ∈ V) |
9 | | fvexd 6364 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom (𝐻‘𝑛)) → ((𝐻‘𝑛)‘𝑥) ∈ V) |
10 | | smflimsuplem3.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
11 | 10 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
12 | | nfv 1992 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
13 | | nfcv 2902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐸‘𝑛) |
14 | | nfrab1 3261 |
. . . . . . . . . 10
⊢
Ⅎ𝑥{𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
15 | | smflimsuplem3.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
16 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ})) |
17 | | eqid 2760 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
18 | 5 | eluzelz2 40125 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
19 | | eqid 2760 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
20 | 18, 19 | uzn0d 40150 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
21 | | fvex 6362 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘𝑚) ∈ V |
22 | 21 | dmex 7264 |
. . . . . . . . . . . . . . . . 17
⊢ dom
(𝐹‘𝑚) ∈ V |
23 | 22 | rgenw 3062 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
25 | 20, 24 | iinexd 39817 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
26 | 25 | adantl 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
27 | 17, 26 | rabexd 4965 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) |
28 | 16, 27 | fvmpt2d 6455 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
29 | | fvres 6368 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑛) → ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) = (𝐹‘𝑚)) |
30 | 29 | eqcomd 2766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(ℤ≥‘𝑛) → (𝐹‘𝑚) = ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)) |
31 | 30 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚) = ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)) |
32 | 31 | dmeqd 5481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → dom (𝐹‘𝑚) = dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)) |
33 | 32 | iineq2dv 4695 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)) |
34 | 33 | eleq2d 2825 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚))) |
35 | 30 | fveq1d 6354 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑛) → ((𝐹‘𝑚)‘𝑥) = (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)) |
36 | 35 | mpteq2ia 4892 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)) |
37 | 36 | rneqi 5507 |
. . . . . . . . . . . . . . . 16
⊢ ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)) |
38 | 37 | supeq1i 8518 |
. . . . . . . . . . . . . . 15
⊢ sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, <
) |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, <
)) |
40 | 39 | eleq1d 2824 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ)) |
41 | 34, 40 | anbi12d 749 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ) ↔ (𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ))) |
42 | 41 | rabbidva2 3326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
43 | 28, 42 | eqtrd 2794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
44 | 12, 13, 14, 43, 39 | mpteq12df 4887 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↦ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, <
))) |
45 | | nfcv 2902 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝐹 ↾ (ℤ≥‘𝑛)) |
46 | | nfcv 2902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐹 ↾ (ℤ≥‘𝑛)) |
47 | 18 | adantl 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ ℤ) |
48 | | smflimsuplem3.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
49 | 48 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
50 | 5 | eleq2i 2831 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
51 | 50 | biimpi 206 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
52 | | uzss 11900 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑀)) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑀)) |
54 | 53, 5 | syl6sseqr 3793 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
55 | 54 | adantl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
56 | 49, 55 | fssresd 6232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑛)):(ℤ≥‘𝑛)⟶(SMblFn‘𝑆)) |
57 | | eqid 2760 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
58 | | eqid 2760 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↦ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↦ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, <
)) |
59 | 45, 46, 47, 19, 11, 56, 57, 58 | smfsupxr 41528 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↦ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ (((𝐹 ↾ (ℤ≥‘𝑛))‘𝑚)‘𝑥)), ℝ*, < )) ∈
(SMblFn‘𝑆)) |
60 | 44, 59 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
(SMblFn‘𝑆)) |
61 | | smflimsuplem3.h |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
62 | 60, 61 | fmptd 6548 |
. . . . . . 7
⊢ (𝜑 → 𝐻:𝑍⟶(SMblFn‘𝑆)) |
63 | 62 | ffvelrnda 6522 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) ∈ (SMblFn‘𝑆)) |
64 | | eqid 2760 |
. . . . . 6
⊢ dom
(𝐻‘𝑛) = dom (𝐻‘𝑛) |
65 | 11, 63, 64 | smff 41447 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):dom (𝐻‘𝑛)⟶ℝ) |
66 | 65 | feqmptd 6411 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑥 ∈ dom (𝐻‘𝑛) ↦ ((𝐻‘𝑛)‘𝑥))) |
67 | 66 | eqcomd 2766 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ dom (𝐻‘𝑛) ↦ ((𝐻‘𝑛)‘𝑥)) = (𝐻‘𝑛)) |
68 | 67, 63 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ dom (𝐻‘𝑛) ↦ ((𝐻‘𝑛)‘𝑥)) ∈ (SMblFn‘𝑆)) |
69 | | eqid 2760 |
. 2
⊢ {𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈
(ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } = {𝑥 ∈ ∪
𝑘 ∈ 𝑍 ∩ 𝑛 ∈
(ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } |
70 | | eqid 2760 |
. 2
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑘 ∈ 𝑍 ∩ 𝑛 ∈
(ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑘 ∈ 𝑍 ∩ 𝑛 ∈
(ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) |
71 | 1, 2, 3, 4, 5, 8, 9, 10, 68, 69, 70 | smflimmpt 41522 |
1
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑘 ∈ 𝑍 ∩ 𝑛 ∈
(ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆)) |