Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminflem Structured version   Visualization version   GIF version

Theorem smfliminflem 41459
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminflem.m (𝜑𝑀 ∈ ℤ)
smfliminflem.z 𝑍 = (ℤ𝑀)
smfliminflem.s (𝜑𝑆 ∈ SAlg)
smfliminflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminflem.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminflem.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝑛,𝐹,𝑥   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfliminflem
StepHypRef Expression
1 smfliminflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smfliminflem.d . . . . . . . . . 10 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
4 ssrab2 3793 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
53, 4eqsstri 3741 . . . . . . . . 9 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
75, 6sseldi 3707 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 smfliminflem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 eqid 2724 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
108, 9allbutfi 40031 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
117, 10sylib 208 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
1211adantl 473 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
13 nfv 1956 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍)
14 nfra1 3043 . . . . . . . . . 10 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)
1513, 14nfan 1941 . . . . . . . . 9 𝑚((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
168fvexi 6315 . . . . . . . . . 10 𝑍 ∈ V
1716a1i 11 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑍 ∈ V)
188eluzelz2 40042 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ ℤ)
1918zred 11595 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℝ)
2019ad2antlr 765 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝑛 ∈ ℝ)
21 simpll 807 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → 𝜑)
22 elinel1 3907 . . . . . . . . . . 11 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚𝑍)
23 smfliminflem.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
2423adantr 472 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
25 smfliminflem.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2625ffvelrnda 6474 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
27 eqid 2724 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
2824, 26, 27smff 41364 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
2921, 22, 28syl2an 495 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
30 simplr 809 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
31 eqid 2724 . . . . . . . . . . . . . 14 (ℤ𝑛) = (ℤ𝑛)
3218adantr 472 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℤ)
338, 22eluzelz2d 40055 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ ℤ)
3433adantl 473 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ ℤ)
3519rexrd 10202 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℝ*)
3635adantr 472 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛 ∈ ℝ*)
37 pnfxr 10205 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
3837a1i 11 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → +∞ ∈ ℝ*)
39 elinel2 3908 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞)) → 𝑚 ∈ (𝑛[,)+∞))
4039adantl 473 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (𝑛[,)+∞))
4136, 38, 40icogelbd 40205 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑛𝑚)
4231, 32, 34, 41eluzd 40050 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
4342adantlr 753 . . . . . . . . . . . 12 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑚 ∈ (ℤ𝑛))
44 rspa 3032 . . . . . . . . . . . 12 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐹𝑚))
4530, 43, 44syl2anc 696 . . . . . . . . . . 11 (((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4645adantlll 756 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → 𝑥 ∈ dom (𝐹𝑚))
4729, 46ffvelrnd 6475 . . . . . . . . 9 ((((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) ∧ 𝑚 ∈ (𝑍 ∩ (𝑛[,)+∞))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
4815, 17, 20, 47liminfval4 40441 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
4948rexlimdva2 39755 . . . . . . 7 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5049adantr 472 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
5112, 50mpd 15 . . . . 5 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5251xnegeqd 40079 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5316mptex 6602 . . . . . . . . . . . 12 (𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)) ∈ V
5453limsupcli 40409 . . . . . . . . . . 11 (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*
5554xnegnegi 40081 . . . . . . . . . 10 -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))
5655a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐷) → -𝑒-𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
5752, 56eqtr2d 2759 . . . . . . . 8 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
583rabeq2i 3301 . . . . . . . . . . 11 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
5958simprbi 483 . . . . . . . . . 10 (𝑥𝐷 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6059adantl 473 . . . . . . . . 9 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6160rexnegd 39750 . . . . . . . 8 ((𝜑𝑥𝐷) → -𝑒(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6257, 61eqtr2d 2759 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6360renegcld 10570 . . . . . . 7 ((𝜑𝑥𝐷) → -(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6462, 63eqeltrrd 2804 . . . . . 6 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
6564rexnegd 39750 . . . . 5 ((𝜑𝑥𝐷) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6651, 65eqtrd 2758 . . . 4 ((𝜑𝑥𝐷) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
6766mpteq2dva 4852 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
682, 67eqtrd 2758 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
69 nfv 1956 . . 3 𝑥𝜑
7018, 31uzn0d 40067 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
71 fvex 6314 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
7271dmex 7216 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
7372rgenw 3026 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
7473a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
75 iinexg 4929 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7670, 74, 75syl2anc 696 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7776rgen 3024 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
78 iunexg 7260 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
7916, 77, 78mp2an 710 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
8079, 5ssexi 4911 . . . 4 𝐷 ∈ V
8180a1i 11 . . 3 (𝜑𝐷 ∈ V)
823a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
8310biimpi 206 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚))
8449imp 444 . . . . . . . . 9 ((𝜑 ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8583, 84sylan2 492 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
8654a1i 11 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ*)
87 simpl 474 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
88 simpr 479 . . . . . . . . . . 11 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
8987, 88eqeltrrd 2804 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
90 xnegrecl2 40105 . . . . . . . . . 10 (((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ* ∧ -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9186, 89, 90syl2anc 696 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
92 simpl 474 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
93 xnegrecl 40080 . . . . . . . . . . 11 ((lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9493adantl 473 . . . . . . . . . 10 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ)
9592, 94eqeltrd 2803 . . . . . . . . 9 (((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∧ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ) → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
9691, 95impbida 913 . . . . . . . 8 ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = -𝑒(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9785, 96syl 17 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ))
9897rabbidva 3292 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
9982, 98eqtrd 2758 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ})
10069, 99mpteq1df 39859 . . . 4 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))))
101 nfv 1956 . . . . 5 𝑚𝜑
102 nfv 1956 . . . . 5 𝑛𝜑
103 smfliminflem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
104 negex 10392 . . . . . 6 -((𝐹𝑚)‘𝑥) ∈ V
105104a1i 11 . . . . 5 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → -((𝐹𝑚)‘𝑥) ∈ V)
106 nfv 1956 . . . . . 6 𝑥(𝜑𝑚𝑍)
10772a1i 11 . . . . . 6 ((𝜑𝑚𝑍) → dom (𝐹𝑚) ∈ V)
10828ffvelrnda 6474 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
10928feqmptd 6363 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)))
110109, 26eqeltrrd 2804 . . . . . 6 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ ((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
111106, 24, 107, 108, 110smfneg 41433 . . . . 5 ((𝜑𝑚𝑍) → (𝑥 ∈ dom (𝐹𝑚) ↦ -((𝐹𝑚)‘𝑥)) ∈ (SMblFn‘𝑆))
112 eqid 2724 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ}
113 eqid 2724 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))))
114101, 69, 102, 103, 8, 23, 105, 111, 112, 113smflimsupmpt 41458 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
115100, 114eqeltrd 2803 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11669, 23, 81, 64, 115smfneg 41433 . 2 (𝜑 → (𝑥𝐷 ↦ -(lim sup‘(𝑚𝑍 ↦ -((𝐹𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
11768, 116eqeltrd 2803 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  wral 3014  wrex 3015  {crab 3018  Vcvv 3304  cin 3679  c0 4023   ciun 4628   ciin 4629  cmpt 4837  dom cdm 5218  wf 5997  cfv 6001  (class class class)co 6765  cr 10048  +∞cpnf 10184  *cxr 10186  -cneg 10380  cz 11490  cuz 11800  -𝑒cxne 12057  [,)cico 12291  lim supclsp 14321  lim infclsi 40403  SAlgcsalg 40948  SMblFncsmblfn 41332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cc 9370  ax-ac2 9398  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-omul 7685  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-acn 8881  df-ac 9052  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-ceil 12709  df-seq 12917  df-exp 12976  df-hash 13233  df-word 13406  df-concat 13408  df-s1 13409  df-s2 13714  df-s3 13715  df-s4 13716  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-rest 16206  df-topgen 16227  df-top 20822  df-bases 20873  df-liminf 40404  df-salg 40949  df-salgen 40953  df-smblfn 41333
This theorem is referenced by:  smfliminf  41460
  Copyright terms: Public domain W3C validator