Step | Hyp | Ref
| Expression |
1 | | smfinflem.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
3 | | nfv 1883 |
. . . . 5
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
4 | | smfinflem.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | smfinflem.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | 4, 5 | uzn0d 39965 |
. . . . . 6
⊢ (𝜑 → 𝑍 ≠ ∅) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ≠ ∅) |
8 | | smfinflem.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
10 | | smfinflem.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
11 | 10 | ffvelrnda 6399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
12 | | eqid 2651 |
. . . . . . . 8
⊢ dom
(𝐹‘𝑛) = dom (𝐹‘𝑛) |
13 | 9, 11, 12 | smff 41262 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
14 | 13 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
15 | | ssrab2 3720 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
16 | | smfinflem.d |
. . . . . . . . . . . 12
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} |
17 | 16 | eleq2i 2722 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)}) |
18 | 17 | biimpi 206 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)}) |
19 | 15, 18 | sseldi 3634 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
21 | | simpr 476 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
22 | | eliinid 39608 |
. . . . . . . 8
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
23 | 20, 21, 22 | syl2anc 694 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
24 | 23 | adantll 750 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
25 | 14, 24 | ffvelrnd 6400 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
26 | | rabidim2 39598 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
27 | 18, 26 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
28 | 27 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
29 | 3, 7, 25, 28 | infnsuprnmpt 39779 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) = -sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
30 | 29 | mpteq2dva 4777 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ 𝐷 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
31 | 2, 30 | eqtrd 2685 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
32 | | nfv 1883 |
. . 3
⊢
Ⅎ𝑥𝜑 |
33 | | fvex 6239 |
. . . . . . . 8
⊢ (𝐹‘𝑛) ∈ V |
34 | 33 | dmex 7141 |
. . . . . . 7
⊢ dom
(𝐹‘𝑛) ∈ V |
35 | 34 | rgenw 2953 |
. . . . . 6
⊢
∀𝑛 ∈
𝑍 dom (𝐹‘𝑛) ∈ V |
36 | 35 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∈ V) |
37 | 6, 36 | iinexd 39632 |
. . . 4
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∈ V) |
38 | 16, 37 | rabexd 4846 |
. . 3
⊢ (𝜑 → 𝐷 ∈ V) |
39 | 25 | renegcld 10495 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → -((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
40 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑚)‘𝑤) = ((𝐹‘𝑚)‘𝑥)) |
41 | 40 | breq2d 4697 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑧 ≤ ((𝐹‘𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹‘𝑚)‘𝑥))) |
42 | 41 | ralbidv 3015 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥))) |
43 | 42 | rexbidv 3081 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥))) |
44 | | nfcv 2793 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
45 | | nfcv 2793 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑍 |
46 | | nfcv 2793 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝐹‘𝑚) |
47 | 46 | nfdm 5399 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥dom
(𝐹‘𝑚) |
48 | 45, 47 | nfiin 4581 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∩ 𝑚 ∈ 𝑍 dom (𝐹‘𝑚) |
49 | | nfv 1883 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) |
50 | | nfv 1883 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤) |
51 | | nfcv 2793 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚dom
(𝐹‘𝑛) |
52 | | nfcv 2793 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝐹‘𝑚) |
53 | 52 | nfdm 5399 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛dom
(𝐹‘𝑚) |
54 | | fveq2 6229 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
55 | 54 | dmeqd 5358 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → dom (𝐹‘𝑛) = dom (𝐹‘𝑚)) |
56 | 51, 53, 55 | cbviin 4590 |
. . . . . . . . . . . 12
⊢ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) = ∩ 𝑚 ∈ 𝑍 dom (𝐹‘𝑚) |
57 | 56 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) = ∩ 𝑚 ∈ 𝑍 dom (𝐹‘𝑚)) |
58 | | fveq2 6229 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑤)) |
59 | 58 | breq2d 4697 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹‘𝑛)‘𝑤))) |
60 | 59 | ralbidv 3015 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑤))) |
61 | | nfv 1883 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚 𝑦 ≤ ((𝐹‘𝑛)‘𝑤) |
62 | | nfcv 2793 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛𝑦 |
63 | | nfcv 2793 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛
≤ |
64 | | nfcv 2793 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛𝑤 |
65 | 52, 64 | nffv 6236 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛((𝐹‘𝑚)‘𝑤) |
66 | 62, 63, 65 | nfbr 4732 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) |
67 | 54 | fveq1d 6231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑛)‘𝑤) = ((𝐹‘𝑚)‘𝑤)) |
68 | 67 | breq2d 4697 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹‘𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
69 | 61, 66, 68 | cbvral 3197 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤)) |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
71 | 60, 70 | bitrd 268 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
72 | 71 | rexbidv 3081 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
73 | | breq1 4688 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
74 | 73 | ralbidv 3015 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
75 | 74 | cbvrexv 3202 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
ℝ ∀𝑚 ∈
𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤)) |
76 | 75 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
77 | 72, 76 | bitrd 268 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
78 | 44, 48, 49, 50, 57, 77 | cbvrabcsf 3601 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑤 ∈ ∩
𝑚 ∈ 𝑍 dom (𝐹‘𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤)} |
79 | 16, 78 | eqtri 2673 |
. . . . . . . . 9
⊢ 𝐷 = {𝑤 ∈ ∩
𝑚 ∈ 𝑍 dom (𝐹‘𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤)} |
80 | 43, 79 | elrab2 3399 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ∩
𝑚 ∈ 𝑍 dom (𝐹‘𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥))) |
81 | 80 | biimpi 206 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (𝑥 ∈ ∩
𝑚 ∈ 𝑍 dom (𝐹‘𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥))) |
82 | 81 | simprd 478 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) |
83 | 82 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) |
84 | | renegcl 10382 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ → -𝑧 ∈
ℝ) |
85 | 84 | ad2antlr 763 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) → -𝑧 ∈ ℝ) |
86 | | fveq2 6229 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
87 | 86 | fveq1d 6231 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) |
88 | 87 | breq2d 4697 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → (𝑧 ≤ ((𝐹‘𝑚)‘𝑥) ↔ 𝑧 ≤ ((𝐹‘𝑛)‘𝑥))) |
89 | 88 | rspcva 3338 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) → 𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) |
90 | 89 | ancoms 468 |
. . . . . . . . . . 11
⊢
((∀𝑚 ∈
𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥) ∧ 𝑛 ∈ 𝑍) → 𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) |
91 | 90 | adantll 750 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → 𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) |
92 | | simpllr 815 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ ℝ) |
93 | 25 | ad4ant14 1317 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
94 | 92, 93 | lenegd 10644 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → (𝑧 ≤ ((𝐹‘𝑛)‘𝑥) ↔ -((𝐹‘𝑛)‘𝑥) ≤ -𝑧)) |
95 | 91, 94 | mpbid 222 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → -((𝐹‘𝑛)‘𝑥) ≤ -𝑧) |
96 | 95 | ralrimiva 2995 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) → ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ -𝑧) |
97 | | breq2 4689 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑧 → (-((𝐹‘𝑛)‘𝑥) ≤ 𝑦 ↔ -((𝐹‘𝑛)‘𝑥) ≤ -𝑧)) |
98 | 97 | ralbidv 3015 |
. . . . . . . . 9
⊢ (𝑦 = -𝑧 → (∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ -𝑧)) |
99 | 98 | rspcev 3340 |
. . . . . . . 8
⊢ ((-𝑧 ∈ ℝ ∧
∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ -𝑧) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
100 | 85, 96, 99 | syl2anc 694 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
101 | 100 | ex 449 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ ℝ) → (∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
102 | 101 | rexlimdva 3060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
103 | 83, 102 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
104 | 3, 7, 39, 103 | suprclrnmpt 39780 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈
ℝ) |
105 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)}) |
106 | | nfv 1883 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
107 | | nfv 1883 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧 |
108 | | renegcl 10382 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
109 | 108 | 3ad2ant2 1103 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) → -𝑦 ∈ ℝ) |
110 | | nfv 1883 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛𝜑 |
111 | | nfcv 2793 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛𝑥 |
112 | | nfii1 4583 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
113 | 111, 112 | nfel 2806 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
114 | 110, 113 | nfan 1868 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
115 | 62 | nfel1 2808 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛 𝑦 ∈ ℝ |
116 | | nfra1 2970 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) |
117 | 114, 115,
116 | nf3an 1871 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
118 | | simpl2 1085 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → 𝑦 ∈ ℝ) |
119 | | simpll 805 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
120 | | simpr 476 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
121 | 22 | adantll 750 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
122 | 13 | 3adant3 1101 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom (𝐹‘𝑛)) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
123 | | simp3 1083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom (𝐹‘𝑛)) → 𝑥 ∈ dom (𝐹‘𝑛)) |
124 | 122, 123 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom (𝐹‘𝑛)) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
125 | 119, 120,
121, 124 | syl3anc 1366 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
126 | 125 | 3ad2antl1 1243 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
127 | | rspa 2959 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑛 ∈
𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ∧ 𝑛 ∈ 𝑍) → 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
128 | 127 | 3ad2antl3 1245 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
129 | | leneg 10569 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ ((𝐹‘𝑛)‘𝑥) ∈ ℝ) → (𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ -((𝐹‘𝑛)‘𝑥) ≤ -𝑦)) |
130 | 129 | biimp3a 1472 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ ((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) → -((𝐹‘𝑛)‘𝑥) ≤ -𝑦) |
131 | 118, 126,
128, 130 | syl3anc 1366 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) ∧ 𝑛 ∈ 𝑍) → -((𝐹‘𝑛)‘𝑥) ≤ -𝑦) |
132 | 131 | ex 449 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) → (𝑛 ∈ 𝑍 → -((𝐹‘𝑛)‘𝑥) ≤ -𝑦)) |
133 | 117, 132 | ralrimi 2986 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) → ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ -𝑦) |
134 | | breq2 4689 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = -𝑦 → (-((𝐹‘𝑛)‘𝑥) ≤ 𝑧 ↔ -((𝐹‘𝑛)‘𝑥) ≤ -𝑦)) |
135 | 134 | ralbidv 3015 |
. . . . . . . . . . . . 13
⊢ (𝑧 = -𝑦 → (∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧 ↔ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ -𝑦)) |
136 | 135 | rspcev 3340 |
. . . . . . . . . . . 12
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) |
137 | 109, 133,
136 | syl2anc 694 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) |
138 | 137 | 3exp 1283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → (𝑦 ∈ ℝ → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧))) |
139 | 106, 107,
138 | rexlimd 3055 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧)) |
140 | 84 | 3ad2ant2 1103 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ∈ ℝ) |
141 | | nfv 1883 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛 𝑧 ∈ ℝ |
142 | | nfra1 2970 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧 |
143 | 114, 141,
142 | nf3an 1871 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) |
144 | 125 | 3ad2antl1 1243 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
145 | | simpl2 1085 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ ℝ) |
146 | | rspa 2959 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑛 ∈
𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧 ∧ 𝑛 ∈ 𝑍) → -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) |
147 | 146 | 3ad2antl3 1245 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛 ∈ 𝑍) → -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) |
148 | | simp3 1083 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) |
149 | | renegcl 10382 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘𝑛)‘𝑥) ∈ ℝ → -((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
150 | 149 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → -((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
151 | | simpr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
152 | | leneg 10569 |
. . . . . . . . . . . . . . . . . . 19
⊢
((-((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹‘𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹‘𝑛)‘𝑥))) |
153 | 150, 151,
152 | syl2anc 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹‘𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹‘𝑛)‘𝑥))) |
154 | 153 | 3adant3 1101 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → (-((𝐹‘𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹‘𝑛)‘𝑥))) |
155 | 148, 154 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ --((𝐹‘𝑛)‘𝑥)) |
156 | | recn 10064 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑛)‘𝑥) ∈ ℝ → ((𝐹‘𝑛)‘𝑥) ∈ ℂ) |
157 | 156 | negnegd 10421 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑛)‘𝑥) ∈ ℝ → --((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) |
158 | 157 | 3ad2ant1 1102 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → --((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) |
159 | 155, 158 | breqtrd 4711 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) |
160 | 144, 145,
147, 159 | syl3anc 1366 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛 ∈ 𝑍) → -𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) |
161 | 160 | ex 449 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → (𝑛 ∈ 𝑍 → -𝑧 ≤ ((𝐹‘𝑛)‘𝑥))) |
162 | 143, 161 | ralrimi 2986 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → ∀𝑛 ∈ 𝑍 -𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) |
163 | | breq1 4688 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = -𝑧 → (𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ -𝑧 ≤ ((𝐹‘𝑛)‘𝑥))) |
164 | 163 | ralbidv 3015 |
. . . . . . . . . . . . 13
⊢ (𝑦 = -𝑧 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∀𝑛 ∈ 𝑍 -𝑧 ≤ ((𝐹‘𝑛)‘𝑥))) |
165 | 164 | rspcev 3340 |
. . . . . . . . . . . 12
⊢ ((-𝑧 ∈ ℝ ∧
∀𝑛 ∈ 𝑍 -𝑧 ≤ ((𝐹‘𝑛)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
166 | 140, 162,
165 | syl2anc 694 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)) |
167 | 166 | 3exp 1283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → (𝑧 ∈ ℝ → (∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)))) |
168 | 167 | rexlimdv 3059 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → (∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥))) |
169 | 139, 168 | impbid 202 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧)) |
170 | 32, 169 | rabbida 39588 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧}) |
171 | 105, 170 | eqtrd 2685 |
. . . . . 6
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧}) |
172 | 32, 171 | alrimi 2120 |
. . . . 5
⊢ (𝜑 → ∀𝑥 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧}) |
173 | | eqid 2651 |
. . . . . . 7
⊢ sup(ran
(𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) |
174 | 173 | rgenw 2953 |
. . . . . 6
⊢
∀𝑥 ∈
𝐷 sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) |
175 | 174 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
176 | | mpteq12f 4764 |
. . . . 5
⊢
((∀𝑥 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} ∧ ∀𝑥 ∈ 𝐷 sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
177 | 172, 175,
176 | syl2anc 694 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
178 | | nfv 1883 |
. . . . 5
⊢
Ⅎ𝑧𝜑 |
179 | 124 | renegcld 10495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom (𝐹‘𝑛)) → -((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
180 | | nfv 1883 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
181 | 34 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ V) |
182 | 124 | 3expa 1284 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ dom (𝐹‘𝑛)) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
183 | 13 | feqmptd 6288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = (𝑥 ∈ dom (𝐹‘𝑛) ↦ ((𝐹‘𝑛)‘𝑥))) |
184 | 183 | eqcomd 2657 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ dom (𝐹‘𝑛) ↦ ((𝐹‘𝑛)‘𝑥)) = (𝐹‘𝑛)) |
185 | 184, 11 | eqeltrd 2730 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ dom (𝐹‘𝑛) ↦ ((𝐹‘𝑛)‘𝑥)) ∈ (SMblFn‘𝑆)) |
186 | 180, 9, 181, 182, 185 | smfneg 41331 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ dom (𝐹‘𝑛) ↦ -((𝐹‘𝑛)‘𝑥)) ∈ (SMblFn‘𝑆)) |
187 | | eqid 2651 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} |
188 | | eqid 2651 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
189 | 110, 32, 178, 4, 5, 8, 179, 186, 187, 188 | smfsupmpt 41342 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -((𝐹‘𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
190 | 177, 189 | eqeltrd 2730 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
191 | 32, 8, 38, 104, 190 | smfneg 41331 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -((𝐹‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
192 | 31, 191 | eqeltrd 2730 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |