Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfid Structured version   Visualization version   GIF version

Theorem smfid 41475
Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfid.j 𝐽 = (topGen‘ran (,))
smfid.b 𝐵 = (SalGen‘𝐽)
smfid.a (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
smfid (𝜑 → (𝑥𝐴𝑥) ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐽(𝑥)

Proof of Theorem smfid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfid.a . 2 (𝜑𝐴 ⊆ ℝ)
21adantr 466 . . . 4 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
3 simpr 471 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐴)
42, 3sseldd 3751 . . 3 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
5 eqid 2770 . . 3 (𝑥𝐴𝑥) = (𝑥𝐴𝑥)
64, 5fmptd 6527 . 2 (𝜑 → (𝑥𝐴𝑥):𝐴⟶ℝ)
7 simpr 471 . . . . . 6 ((((𝜑𝑦𝐴) ∧ 𝑧𝐴) ∧ 𝑦𝑧) → 𝑦𝑧)
85a1i 11 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝑥𝐴𝑥) = (𝑥𝐴𝑥))
9 simpr 471 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
10 simpr 471 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦𝐴)
118, 9, 10, 10fvmptd 6430 . . . . . . . 8 ((𝜑𝑦𝐴) → ((𝑥𝐴𝑥)‘𝑦) = 𝑦)
1211ad2antrr 697 . . . . . . 7 ((((𝜑𝑦𝐴) ∧ 𝑧𝐴) ∧ 𝑦𝑧) → ((𝑥𝐴𝑥)‘𝑦) = 𝑦)
135a1i 11 . . . . . . . . 9 ((𝜑𝑧𝐴) → (𝑥𝐴𝑥) = (𝑥𝐴𝑥))
14 simpr 471 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
15 simpr 471 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧𝐴)
1613, 14, 15, 15fvmptd 6430 . . . . . . . 8 ((𝜑𝑧𝐴) → ((𝑥𝐴𝑥)‘𝑧) = 𝑧)
1716ad4ant13 1205 . . . . . . 7 ((((𝜑𝑦𝐴) ∧ 𝑧𝐴) ∧ 𝑦𝑧) → ((𝑥𝐴𝑥)‘𝑧) = 𝑧)
1812, 17breq12d 4797 . . . . . 6 ((((𝜑𝑦𝐴) ∧ 𝑧𝐴) ∧ 𝑦𝑧) → (((𝑥𝐴𝑥)‘𝑦) ≤ ((𝑥𝐴𝑥)‘𝑧) ↔ 𝑦𝑧))
197, 18mpbird 247 . . . . 5 ((((𝜑𝑦𝐴) ∧ 𝑧𝐴) ∧ 𝑦𝑧) → ((𝑥𝐴𝑥)‘𝑦) ≤ ((𝑥𝐴𝑥)‘𝑧))
2019ex 397 . . . 4 (((𝜑𝑦𝐴) ∧ 𝑧𝐴) → (𝑦𝑧 → ((𝑥𝐴𝑥)‘𝑦) ≤ ((𝑥𝐴𝑥)‘𝑧)))
2120ralrimiva 3114 . . 3 ((𝜑𝑦𝐴) → ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝑥)‘𝑦) ≤ ((𝑥𝐴𝑥)‘𝑧)))
2221ralrimiva 3114 . 2 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝑥)‘𝑦) ≤ ((𝑥𝐴𝑥)‘𝑧)))
23 smfid.j . 2 𝐽 = (topGen‘ran (,))
24 smfid.b . 2 𝐵 = (SalGen‘𝐽)
251, 6, 22, 23, 24incsmf 41465 1 (𝜑 → (𝑥𝐴𝑥) ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wral 3060  wss 3721   class class class wbr 4784  cmpt 4861  ran crn 5250  cfv 6031  cr 10136  cle 10276  (,)cioo 12379  topGenctg 16305  SalGencsalgen 41043  SMblFncsmblfn 41423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-card 8964  df-acn 8967  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-ioo 12383  df-ioc 12384  df-ico 12385  df-fl 12800  df-rest 16290  df-topgen 16311  df-top 20918  df-bases 20970  df-salg 41040  df-salgen 41044  df-smblfn 41424
This theorem is referenced by:  smf2id  41522
  Copyright terms: Public domain W3C validator