![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smff | Structured version Visualization version GIF version |
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smff.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smff.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smff.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
smff | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smff.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
2 | smff.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smff.d | . . . 4 ⊢ 𝐷 = dom 𝐹 | |
4 | 2, 3 | issmf 41451 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
5 | 1, 4 | mpbid 222 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
6 | 5 | simp2d 1136 | 1 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∀wral 3060 {crab 3064 ⊆ wss 3721 ∪ cuni 4572 class class class wbr 4784 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 < clt 10275 ↾t crest 16288 SAlgcsalg 41039 SMblFncsmblfn 41423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-pre-lttri 10211 ax-pre-lttrn 10212 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-er 7895 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-ioo 12383 df-ico 12385 df-smblfn 41424 |
This theorem is referenced by: sssmf 41461 smfsssmf 41466 issmfle 41468 issmfgt 41479 issmfge 41492 smflimlem2 41494 smflimlem3 41495 smflimlem4 41496 smflim 41499 smfpimgtxr 41502 smfpimioompt 41507 smfpimioo 41508 smfresal 41509 smfres 41511 smfco 41523 smffmpt 41525 smfsuplem1 41531 smfsuplem3 41533 smfsupxr 41536 smfinflem 41537 smflimsuplem2 41541 smflimsuplem3 41542 smflimsuplem4 41543 smflimsuplem5 41544 smfliminflem 41550 |
Copyright terms: Public domain | W3C validator |