Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfaddlem2 Structured version   Visualization version   GIF version

Theorem smfaddlem2 41497
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfaddlem2.x 𝑥𝜑
smfaddlem2.s (𝜑𝑆 ∈ SAlg)
smfaddlem2.a (𝜑𝐴𝑉)
smfaddlem2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfaddlem2.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfaddlem2.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfaddlem2.7 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfaddlem2.r (𝜑𝑅 ∈ ℝ)
smfaddlem2.k 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
Assertion
Ref Expression
smfaddlem2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑥   𝐵,𝑝,𝑞   𝐶,𝑝,𝑞,𝑥   𝐷,𝑝,𝑞   𝐾,𝑞,𝑥   𝑅,𝑝,𝑞   𝑆,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐾(𝑝)   𝑉(𝑥,𝑞,𝑝)

Proof of Theorem smfaddlem2
StepHypRef Expression
1 smfaddlem2.x . . 3 𝑥𝜑
2 smfaddlem2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3 smfaddlem2.d . . 3 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
4 smfaddlem2.r . . 3 (𝜑𝑅 ∈ ℝ)
5 smfaddlem2.k . . 3 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
61, 2, 3, 4, 5smfaddlem1 41496 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
7 smfaddlem2.s . . . 4 (𝜑𝑆 ∈ SAlg)
8 smfaddlem2.a . . . . 5 (𝜑𝐴𝑉)
9 elinel1 3943 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
109adantl 473 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
111, 10ssdf 39765 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
128, 11ssexd 4958 . . . 4 (𝜑 → (𝐴𝐶) ∈ V)
13 eqid 2761 . . . 4 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
147, 12, 13subsalsal 41099 . . 3 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
15 qct 40095 . . . 4 ℚ ≼ ω
1615a1i 11 . . 3 (𝜑 → ℚ ≼ ω)
1714adantr 472 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝑆t (𝐴𝐶)) ∈ SAlg)
18 qex 12014 . . . . . . 7 ℚ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → ℚ ∈ V)
205a1i 11 . . . . . . . 8 (𝜑𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}))
2118rabex 4965 . . . . . . . . 9 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V
2221a1i 11 . . . . . . . 8 ((𝜑𝑝 ∈ ℚ) → {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V)
2320, 22fvmpt2d 6457 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
24 ssrab2 3829 . . . . . . 7 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ⊆ ℚ
2523, 24syl6eqss 3797 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ⊆ ℚ)
26 ssdomg 8170 . . . . . 6 (ℚ ∈ V → ((𝐾𝑝) ⊆ ℚ → (𝐾𝑝) ≼ ℚ))
2719, 25, 26sylc 65 . . . . 5 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ℚ)
2815a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℚ) → ℚ ≼ ω)
29 domtr 8177 . . . . 5 (((𝐾𝑝) ≼ ℚ ∧ ℚ ≼ ω) → (𝐾𝑝) ≼ ω)
3027, 28, 29syl2anc 696 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ω)
31 inrab 4043 . . . . 5 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
3214ad2antrr 764 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑆t (𝐴𝐶)) ∈ SAlg)
33 nfv 1993 . . . . . . . . 9 𝑥 𝑝 ∈ ℚ
341, 33nfan 1978 . . . . . . . 8 𝑥(𝜑𝑝 ∈ ℚ)
35 nfv 1993 . . . . . . . 8 𝑥 𝑞 ∈ (𝐾𝑝)
3634, 35nfan 1978 . . . . . . 7 𝑥((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝))
377ad2antrr 764 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑆 ∈ SAlg)
3810, 2syldan 488 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
3938ad4ant14 1209 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
40 smfaddlem2.m . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
417, 40, 11sssmfmpt 41484 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4241ad2antrr 764 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
43 qre 12007 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 ∈ ℝ)
4443ad2antlr 765 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑝 ∈ ℝ)
4536, 37, 39, 42, 44smfpimltmpt 41480 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∈ (𝑆t (𝐴𝐶)))
46 elinel2 3944 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
4746adantl 473 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
4847, 3syldan 488 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
4948ad4ant14 1209 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
50 smfaddlem2.7 . . . . . . . . 9 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
511, 47ssdf 39765 . . . . . . . . 9 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
527, 50, 51sssmfmpt 41484 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5352ad2antrr 764 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5443ssriv 3749 . . . . . . . 8 ℚ ⊆ ℝ
5525sselda 3745 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℚ)
5654, 55sseldi 3743 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℝ)
5736, 37, 49, 53, 56smfpimltmpt 41480 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞} ∈ (𝑆t (𝐴𝐶)))
5832, 45, 57salincld 41092 . . . . 5 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) ∈ (𝑆t (𝐴𝐶)))
5931, 58syl5eqelr 2845 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6017, 30, 59saliuncl 41064 . . 3 ((𝜑𝑝 ∈ ℚ) → 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6114, 16, 60saliuncl 41064 . 2 (𝜑 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
626, 61eqeltrd 2840 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wnf 1857  wcel 2140  {crab 3055  Vcvv 3341  cin 3715  wss 3716   ciun 4673   class class class wbr 4805  cmpt 4882  cfv 6050  (class class class)co 6815  ωcom 7232  cdom 8122  cr 10148   + caddc 10152   < clt 10287  cq 12002  t crest 16304  SAlgcsalg 41050  SMblFncsmblfn 41434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cc 9470  ax-ac2 9498  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-omul 7736  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-acn 8979  df-ac 9150  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-ioo 12393  df-ico 12395  df-rest 16306  df-salg 41051  df-smblfn 41435
This theorem is referenced by:  smfadd  41498
  Copyright terms: Public domain W3C validator