![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smf2id | Structured version Visualization version GIF version |
Description: Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smf2id.j | ⊢ 𝐽 = (topGen‘ran (,)) |
smf2id.b | ⊢ 𝐵 = (SalGen‘𝐽) |
smf2id.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
smf2id | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1994 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | smf2id.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retop 22784 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
4 | 2, 3 | eqeltri 2845 | . . . 4 ⊢ 𝐽 ∈ Top |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | smf2id.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | salgencld 41078 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
8 | reex 10228 | . . . 4 ⊢ ℝ ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
10 | smf2id.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
11 | 9, 10 | ssexd 4936 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | 10 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
13 | simpr 471 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
14 | 12, 13 | sseldd 3751 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
15 | 2re 11291 | . . 3 ⊢ 2 ∈ ℝ | |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 2 ∈ ℝ) |
17 | 2, 6, 10 | smfid 41475 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
18 | 1, 7, 11, 14, 16, 17 | smfmulc1 41517 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ⊆ wss 3721 ↦ cmpt 4861 ran crn 5250 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 · cmul 10142 2c2 11271 (,)cioo 12379 topGenctg 16305 Topctop 20917 SalGencsalgen 41043 SMblFncsmblfn 41423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cc 9458 ax-ac2 9486 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-omul 7717 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-acn 8967 df-ac 9138 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-seq 13008 df-exp 13067 df-hash 13321 df-word 13494 df-concat 13496 df-s1 13497 df-s2 13801 df-s3 13802 df-s4 13803 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-rest 16290 df-topgen 16311 df-top 20918 df-bases 20970 df-salg 41040 df-salgen 41044 df-smblfn 41424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |