MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcnlem Structured version   Visualization version   GIF version

Theorem smcnlem 27861
Description: Lemma for smcn 27862. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c 𝐶 = (IndMet‘𝑈)
smcn.j 𝐽 = (MetOpen‘𝐶)
smcn.s 𝑆 = ( ·𝑠OLD𝑈)
smcn.k 𝐾 = (TopOpen‘ℂfld)
smcn.x 𝑋 = (BaseSet‘𝑈)
smcn.n 𝑁 = (normCV𝑈)
smcn.u 𝑈 ∈ NrmCVec
smcn.t 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
Assertion
Ref Expression
smcnlem 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐶   𝐽,𝑟,𝑥,𝑦   𝑈,𝑟,𝑥,𝑦   𝐾,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑟)   𝑁(𝑥,𝑦,𝑟)

Proof of Theorem smcnlem
Dummy variables 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.u . . 3 𝑈 ∈ NrmCVec
2 smcn.x . . . 4 𝑋 = (BaseSet‘𝑈)
3 smcn.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvsf 27783 . . 3 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × 𝑋)⟶𝑋)
51, 4ax-mp 5 . 2 𝑆:(ℂ × 𝑋)⟶𝑋
6 smcn.t . . . . . 6 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
7 1rp 12029 . . . . . . . 8 1 ∈ ℝ+
8 simpr 479 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 𝑦𝑋)
9 smcn.n . . . . . . . . . . . . 13 𝑁 = (normCV𝑈)
102, 9nvcl 27825 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
111, 8, 10sylancr 698 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
12 abscl 14217 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1312adantr 472 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (abs‘𝑥) ∈ ℝ)
1411, 13readdcld 10261 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
152, 9nvge0 27837 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
161, 8, 15sylancr 698 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
17 absge0 14226 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
1817adantr 472 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (abs‘𝑥))
1911, 13, 16, 18addge0d 10795 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ ((𝑁𝑦) + (abs‘𝑥)))
2014, 19ge0p1rpd 12095 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+)
21 rpdivcl 12049 . . . . . . . . 9 (((((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
2220, 21sylan 489 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
23 rpaddcl 12047 . . . . . . . 8 ((1 ∈ ℝ+ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
247, 22, 23sylancr 698 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
2524rpreccld 12075 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ∈ ℝ+)
266, 25syl5eqel 2843 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑇 ∈ ℝ+)
27 smcn.c . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
282, 27imsmet 27855 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘𝑋))
291, 28ax-mp 5 . . . . . . . . . 10 𝐶 ∈ (Met‘𝑋)
3029a1i 11 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝐶 ∈ (Met‘𝑋))
311a1i 11 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑈 ∈ NrmCVec)
32 simplll 815 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑥 ∈ ℂ)
33 simpllr 817 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑦𝑋)
342, 3nvscl 27790 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑥𝑆𝑦) ∈ 𝑋)
3531, 32, 33, 34syl3anc 1477 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑆𝑦) ∈ 𝑋)
36 simprll 821 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑧 ∈ ℂ)
37 simprlr 822 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑤𝑋)
382, 3nvscl 27790 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑤𝑋) → (𝑧𝑆𝑤) ∈ 𝑋)
3931, 36, 37, 38syl3anc 1477 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑤) ∈ 𝑋)
40 metcl 22338 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4130, 35, 39, 40syl3anc 1477 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
422, 3nvscl 27790 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋) → (𝑧𝑆𝑦) ∈ 𝑋)
4331, 36, 33, 42syl3anc 1477 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑦) ∈ 𝑋)
44 metcl 22338 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
4530, 35, 43, 44syl3anc 1477 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
46 metcl 22338 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4730, 43, 39, 46syl3anc 1477 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4845, 47readdcld 10261 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ∈ ℝ)
49 rpre 12032 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
5049ad2antlr 765 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ)
51 mettri 22358 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ ((𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋)) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
5230, 35, 39, 43, 51syl13anc 1479 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
531, 33, 10sylancr 698 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℝ)
5432abscld 14374 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℝ)
5553, 54readdcld 10261 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
56 peano2re 10401 . . . . . . . . . . 11 (((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5826adantr 472 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ+)
5958rpred 12065 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ)
6057, 59remulcld 10262 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) ∈ ℝ)
6132, 36subcld 10584 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑧) ∈ ℂ)
6261abscld 14374 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ∈ ℝ)
6362, 53remulcld 10262 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ∈ ℝ)
6436abscld 14374 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ∈ ℝ)
65 eqid 2760 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
662, 65nvmcl 27810 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
6731, 33, 37, 66syl3anc 1477 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
682, 9nvcl 27825 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
691, 67, 68sylancr 698 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
7064, 69remulcld 10262 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ∈ ℝ)
7153, 59remulcld 10262 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) · 𝑇) ∈ ℝ)
72 peano2re 10401 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
7354, 72syl 17 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℝ)
7473, 59remulcld 10262 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘𝑥) + 1) · 𝑇) ∈ ℝ)
751, 33, 15sylancr 698 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁𝑦))
7632, 36abssubd 14391 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) = (abs‘(𝑧𝑥)))
7736, 32subcld 10584 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑥) ∈ ℂ)
7877abscld 14374 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ∈ ℝ)
79 eqid 2760 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 22775 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8132, 36, 80syl2anc 696 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8281, 76eqtrd 2794 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑧𝑥)))
83 simprrl 823 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) < 𝑇)
8482, 83eqbrtrrd 4828 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) < 𝑇)
8578, 59, 84ltled 10377 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 𝑇)
8676, 85eqbrtrd 4826 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ≤ 𝑇)
8762, 59, 53, 75, 86lemul1ad 11155 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ (𝑇 · (𝑁𝑦)))
8858rpcnd 12067 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℂ)
8953recnd 10260 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℂ)
9088, 89mulcomd 10253 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑇 · (𝑁𝑦)) = ((𝑁𝑦) · 𝑇))
9187, 90breqtrd 4830 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ ((𝑁𝑦) · 𝑇))
9236absge0d 14382 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (abs‘𝑧))
932, 9nvge0 27837 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
941, 67, 93sylancr 698 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
9554, 78readdcld 10261 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ∈ ℝ)
9632, 36pncan3d 10587 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (𝑧𝑥)) = 𝑧)
9796fveq2d 6356 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) = (abs‘𝑧))
9832, 77abstrid 14394 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
9997, 98eqbrtrrd 4828 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
100 1red 10247 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℝ)
101 1re 10231 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
10222adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
103 ltaddrp 12060 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
104101, 102, 103sylancr 698 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
10524adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
106105recgt1d 12079 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ↔ (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1))
107104, 106mpbid 222 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1)
1086, 107syl5eqbr 4839 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 < 1)
10959, 100, 108ltled 10377 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ≤ 1)
11078, 59, 100, 85, 109letrd 10386 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 1)
11178, 100, 54, 110leadd2dd 10834 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ≤ ((abs‘𝑥) + 1))
11264, 95, 73, 99, 111letrd 10386 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + 1))
1132, 65, 9, 27imsdval 27850 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
11431, 33, 37, 113syl3anc 1477 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
115 simprrr 824 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) < 𝑇)
116114, 115eqbrtrrd 4828 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) < 𝑇)
11769, 59, 116ltled 10377 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ≤ 𝑇)
11864, 73, 69, 59, 92, 94, 112, 117lemul12ad 11158 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ≤ (((abs‘𝑥) + 1) · 𝑇))
11963, 70, 71, 74, 91, 118le2addd 10838 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))) ≤ (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
120 eqid 2760 . . . . . . . . . . . . . 14 ( +𝑣𝑈) = ( +𝑣𝑈)
1212, 120, 3, 9, 27imsdval2 27851 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
12231, 35, 43, 121syl3anc 1477 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
123 neg1cn 11316 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
124 mulcl 10212 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) ∈ ℂ)
125123, 36, 124sylancr 698 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) ∈ ℂ)
1262, 120, 3nvdir 27795 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (-1 · 𝑧) ∈ ℂ ∧ 𝑦𝑋)) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12731, 32, 125, 33, 126syl13anc 1479 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12836mulm1d 10674 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) = -𝑧)
129128oveq2d 6829 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥 + -𝑧))
13032, 36negsubd 10590 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + -𝑧) = (𝑥𝑧))
131129, 130eqtrd 2794 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥𝑧))
132131oveq1d 6828 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑧)𝑆𝑦))
133123a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → -1 ∈ ℂ)
1342, 3nvsass 27792 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋)) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
13531, 133, 36, 33, 134syl13anc 1479 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
136135oveq2d 6829 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
137127, 132, 1363eqtr3d 2802 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑧)𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
138137fveq2d 6356 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
1392, 3, 9nvs 27827 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑧) ∈ ℂ ∧ 𝑦𝑋) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
14031, 61, 33, 139syl3anc 1477 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
141122, 138, 1403eqtr2d 2800 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
1422, 65, 9, 27imsdval 27850 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
14331, 43, 39, 142syl3anc 1477 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1442, 65, 3nvmdi 27812 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝑧 ∈ ℂ ∧ 𝑦𝑋𝑤𝑋)) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
14531, 36, 33, 37, 144syl13anc 1479 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
146145fveq2d 6356 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1472, 3, 9nvs 27827 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
14831, 36, 67, 147syl3anc 1477 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
149143, 146, 1483eqtr2d 2800 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
150141, 149oveq12d 6831 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) = (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))))
15154recnd 10260 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℂ)
152 1cnd 10248 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℂ)
15389, 151, 152addassd 10254 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) = ((𝑁𝑦) + ((abs‘𝑥) + 1)))
154153oveq1d 6828 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇))
15573recnd 10260 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℂ)
15689, 155, 88adddird 10257 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
157154, 156eqtrd 2794 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
158119, 150, 1573brtr4d 4836 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ≤ ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇))
15957recnd 10260 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℂ)
160105rpcnd 12067 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℂ)
161105rpne0d 12070 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ≠ 0)
162159, 160, 161divrecd 10996 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))))
1636oveq2i 6824 . . . . . . . . . . 11 ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
164162, 163syl6reqr 2813 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
165 simplr 809 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ+)
166102rpred 12065 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ)
167166ltp1d 11146 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1))
168102rpcnd 12067 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℂ)
169168, 152addcomd 10430 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1) = (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
170167, 169breqtrd 4830 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
17157, 165, 105, 170ltdiv23d 12130 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 𝑟)
172164, 171eqbrtrd 4826 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) < 𝑟)
17348, 60, 50, 158, 172lelttrd 10387 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) < 𝑟)
17441, 48, 50, 52, 173lelttrd 10387 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
175174expr 644 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ ℂ ∧ 𝑤𝑋)) → (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
176175ralrimivva 3109 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
177 breq2 4808 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑥(abs ∘ − )𝑧) < 𝑠 ↔ (𝑥(abs ∘ − )𝑧) < 𝑇))
178 breq2 4808 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < 𝑇))
179177, 178anbi12d 749 . . . . . . . 8 (𝑠 = 𝑇 → (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇)))
180179imbi1d 330 . . . . . . 7 (𝑠 = 𝑇 → ((((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1811802ralbidv 3127 . . . . . 6 (𝑠 = 𝑇 → (∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
182181rspcev 3449 . . . . 5 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
18326, 176, 182syl2anc 696 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
184183ralrimiva 3104 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
185184rgen2 3113 . 2 𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
186 cnxmet 22777 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
1872, 27imsxmet 27856 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
1881, 187ax-mp 5 . . 3 𝐶 ∈ (∞Met‘𝑋)
189 smcn.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
190189cnfldtopn 22786 . . . 4 𝐾 = (MetOpen‘(abs ∘ − ))
191 smcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
192190, 191, 191txmetcn 22554 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘𝑋)) → (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))))
193186, 188, 188, 192mp3an 1573 . 2 (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1945, 185, 193mpbir2an 993 1 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051   class class class wbr 4804   × cxp 5264  ccom 5270  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  +crp 12025  abscabs 14173  TopOpenctopn 16284  ∞Metcxmt 19933  Metcme 19934  MetOpencmopn 19938  fldccnfld 19948   Cn ccn 21230   ×t ctx 21565  NrmCVeccnv 27748   +𝑣 cpv 27749  BaseSetcba 27750   ·𝑠OLD cns 27751  𝑣 cnsb 27753  normCVcnmcv 27754  IndMetcims 27755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-cnp 21234  df-tx 21567  df-hmeo 21760  df-xms 22326  df-tms 22328  df-grpo 27656  df-gid 27657  df-ginv 27658  df-gdiv 27659  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-vs 27763  df-nmcv 27764  df-ims 27765
This theorem is referenced by:  smcn  27862
  Copyright terms: Public domain W3C validator