Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatrcl Structured version   Visualization version   GIF version

Theorem smatrcl 29836
Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
Assertion
Ref Expression
smatrcl (𝜑𝑆 ∈ (𝐵𝑚 ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))

Proof of Theorem smatrcl
Dummy variables 𝑖 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
2 elmapi 7864 . . . . . . . 8 (𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))) → 𝐴:((1...𝑀) × (1...𝑁))⟶𝐵)
3 ffun 6035 . . . . . . . 8 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → Fun 𝐴)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐴)
5 eqid 2620 . . . . . . . . 9 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
65mpt2fun 6747 . . . . . . . 8 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
76a1i 11 . . . . . . 7 (𝜑 → Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
8 funco 5916 . . . . . . 7 ((Fun 𝐴 ∧ Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
94, 7, 8syl2anc 692 . . . . . 6 (𝜑 → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
10 smat.s . . . . . . . 8 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
11 fz1ssnn 12357 . . . . . . . . . 10 (1...𝑀) ⊆ ℕ
12 smat.k . . . . . . . . . 10 (𝜑𝐾 ∈ (1...𝑀))
1311, 12sseldi 3593 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
14 fz1ssnn 12357 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
15 smat.l . . . . . . . . . 10 (𝜑𝐿 ∈ (1...𝑁))
1614, 15sseldi 3593 . . . . . . . . 9 (𝜑𝐿 ∈ ℕ)
17 smatfval 29835 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1813, 16, 1, 17syl3anc 1324 . . . . . . . 8 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1910, 18syl5eq 2666 . . . . . . 7 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
2019funeqd 5898 . . . . . 6 (𝜑 → (Fun 𝑆 ↔ Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))))
219, 20mpbird 247 . . . . 5 (𝜑 → Fun 𝑆)
22 fdmrn 6051 . . . . 5 (Fun 𝑆𝑆:dom 𝑆⟶ran 𝑆)
2321, 22sylib 208 . . . 4 (𝜑𝑆:dom 𝑆⟶ran 𝑆)
2419dmeqd 5315 . . . . . 6 (𝜑 → dom 𝑆 = dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
25 dmco 5631 . . . . . . 7 dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴)
26 fdm 6038 . . . . . . . . . . . 12 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
271, 2, 263syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
2827imaeq2d 5454 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))))
2928eleq2d 2685 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁)))))
30 opex 4923 . . . . . . . . . . . 12 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
315, 30fnmpt2i 7224 . . . . . . . . . . 11 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ)
32 elpreima 6323 . . . . . . . . . . 11 ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ) → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
3331, 32ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
35 simplr 791 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3635fveq2d 6182 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩))
37 df-ov 6638 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩)
3836, 37syl6eqr 2672 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)))
39 breq1 4647 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 < 𝐾 ↔ (1st𝑥) < 𝐾))
40 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → 𝑖 = (1st𝑥))
41 oveq1 6642 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 + 1) = ((1st𝑥) + 1))
4239, 40, 41ifbieq12d 4104 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (1st𝑥) → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)))
4342opeq1d 4399 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (1st𝑥) → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
44 breq1 4647 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 < 𝐿 ↔ (2nd𝑥) < 𝐿))
45 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → 𝑗 = (2nd𝑥))
46 oveq1 6642 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 + 1) = ((2nd𝑥) + 1))
4744, 45, 46ifbieq12d 4104 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (2nd𝑥) → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)))
4847opeq2d 4400 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (2nd𝑥) → ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
49 opex 4923 . . . . . . . . . . . . . . . . . . 19 ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ V
5043, 48, 5, 49ovmpt2 6781 . . . . . . . . . . . . . . . . . 18 (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5150adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5238, 51eqtrd 2654 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5352eleq1d 2684 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁))))
54 opelxp 5136 . . . . . . . . . . . . . . 15 (⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)))
5553, 54syl6bb 276 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁))))
56 ifel 4120 . . . . . . . . . . . . . . . 16 (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))))
57 simplrl 799 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℕ)
5857nnred 11020 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℝ)
5913nnred 11020 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 ∈ ℝ)
6059ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾 ∈ ℝ)
61 smat.m . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℕ)
6261nnred 11020 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ ℝ)
6362ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℝ)
64 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝐾)
6558, 60, 64ltled 10170 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝐾)
66 elfzle2 12330 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
6712, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾𝑀)
6867ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾𝑀)
6958, 60, 63, 65, 68letrd 10179 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝑀)
7057, 69jca 554 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀))
7161nnzd 11466 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℤ)
72 fznn 12393 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7473ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7570, 74mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ (1...𝑀))
7658, 60, 63, 64, 68ltletrd 10182 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝑀)
7761ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℕ)
78 nnltlem1 11429 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
7957, 77, 78syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
8076, 79mpbid 222 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ (𝑀 − 1))
8175, 802thd 255 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
8281pm5.32da 672 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
83 fznn 12393 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8471, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8584ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
86 simprl 793 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℕ)
8786peano2nnd 11022 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥) + 1) ∈ ℕ)
8887biantrurd 529 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8986nnzd 11466 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
9071ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑀 ∈ ℤ)
91 zltp1le 11412 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ ((1st𝑥) + 1) ≤ 𝑀))
92 zltlem1 11415 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9391, 92bitr3d 270 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9489, 90, 93syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9585, 88, 943bitr2d 296 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
9695anbi2d 739 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀)) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
9782, 96orbi12d 745 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))))
98 pm4.42 1003 . . . . . . . . . . . . . . . . . 18 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)))
99 ancom 466 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
100 ancom 466 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
10199, 100orbi12i 543 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10298, 101bitri 264 . . . . . . . . . . . . . . . . 17 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10397, 102syl6bbr 278 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (1st𝑥) ≤ (𝑀 − 1)))
10456, 103syl5bb 272 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
105 ifel 4120 . . . . . . . . . . . . . . . 16 (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))))
106 simplrr 800 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℕ)
107106nnred 11020 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℝ)
10816nnred 11020 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿 ∈ ℝ)
109108ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿 ∈ ℝ)
110 smat.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℕ)
111110nnred 11020 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ ℝ)
112111ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℝ)
113 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝐿)
114107, 109, 113ltled 10170 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝐿)
115 elfzle2 12330 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (1...𝑁) → 𝐿𝑁)
11615, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿𝑁)
117116ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿𝑁)
118107, 109, 112, 114, 117letrd 10179 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝑁)
119106, 118jca 554 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁))
120110nnzd 11466 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℤ)
121 fznn 12393 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
123122ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
124119, 123mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ (1...𝑁))
125107, 109, 112, 113, 117ltletrd 10182 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝑁)
126110ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℕ)
127 nnltlem1 11429 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
128106, 126, 127syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
129125, 128mpbid 222 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ (𝑁 − 1))
130124, 1292thd 255 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
131130pm5.32da 672 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
132 fznn 12393 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
134133ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
135 simprr 795 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
136135peano2nnd 11022 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((2nd𝑥) + 1) ∈ ℕ)
137136biantrurd 529 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
138135nnzd 11466 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℤ)
139120ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑁 ∈ ℤ)
140 zltp1le 11412 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ ((2nd𝑥) + 1) ≤ 𝑁))
141 zltlem1 11415 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
142140, 141bitr3d 270 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
143138, 139, 142syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
144134, 137, 1433bitr2d 296 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
145144anbi2d 739 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁)) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
146131, 145orbi12d 745 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
147 pm4.42 1003 . . . . . . . . . . . . . . . . . 18 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)))
148 ancom 466 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
149 ancom 466 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
150148, 149orbi12i 543 . . . . . . . . . . . . . . . . . 18 ((((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
151147, 150bitri 264 . . . . . . . . . . . . . . . . 17 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
152146, 151syl6bbr 278 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
153105, 152syl5bb 272 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
154104, 153anbi12d 746 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
15555, 154bitrd 268 . . . . . . . . . . . . 13 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
156155pm5.32da 672 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
157 1zzd 11393 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
15871, 157zsubcld 11472 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) ∈ ℤ)
159 fznn 12393 . . . . . . . . . . . . . . . 16 ((𝑀 − 1) ∈ ℤ → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
160158, 159syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
161120, 157zsubcld 11472 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℤ)
162 fznn 12393 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℤ → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
163161, 162syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
164160, 163anbi12d 746 . . . . . . . . . . . . . 14 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
165 an4 864 . . . . . . . . . . . . . 14 ((((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
166164, 165syl6bb 276 . . . . . . . . . . . . 13 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
167166adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
168156, 167bitr4d 271 . . . . . . . . . . 11 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
169168pm5.32da 672 . . . . . . . . . 10 (𝜑 → ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))))))
170 elxp6 7185 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)))
171170anbi1i 730 . . . . . . . . . . 11 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
172 anass 680 . . . . . . . . . . 11 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
173171, 172bitri 264 . . . . . . . . . 10 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
174 elxp6 7185 . . . . . . . . . 10 (𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
175169, 173, 1743bitr4g 303 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
17629, 34, 1753bitrd 294 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
177176eqrdv 2618 . . . . . . 7 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17825, 177syl5eq 2666 . . . . . 6 (𝜑 → dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17924, 178eqtrd 2654 . . . . 5 (𝜑 → dom 𝑆 = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
180179feq2d 6018 . . . 4 (𝜑 → (𝑆:dom 𝑆⟶ran 𝑆𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆))
18123, 180mpbid 222 . . 3 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆)
18219rneqd 5342 . . . . 5 (𝜑 → ran 𝑆 = ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
183 rncoss 5375 . . . . 5 ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ⊆ ran 𝐴
184182, 183syl6eqss 3647 . . . 4 (𝜑 → ran 𝑆 ⊆ ran 𝐴)
185 frn 6040 . . . . 5 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → ran 𝐴𝐵)
1861, 2, 1853syl 18 . . . 4 (𝜑 → ran 𝐴𝐵)
187184, 186sstrd 3605 . . 3 (𝜑 → ran 𝑆𝐵)
188 fss 6043 . . 3 ((𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆 ∧ ran 𝑆𝐵) → 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
189181, 187, 188syl2anc 692 . 2 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
190 reldmmap 7851 . . . . . 6 Rel dom ↑𝑚
191190ovrcl 6671 . . . . 5 (𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))) → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
1921, 191syl 17 . . . 4 (𝜑 → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
193192simpld 475 . . 3 (𝜑𝐵 ∈ V)
194 ovex 6663 . . . 4 (1...(𝑀 − 1)) ∈ V
195 ovex 6663 . . . 4 (1...(𝑁 − 1)) ∈ V
196194, 195xpex 6947 . . 3 ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V
197 elmapg 7855 . . 3 ((𝐵 ∈ V ∧ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V) → (𝑆 ∈ (𝐵𝑚 ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
198193, 196, 197sylancl 693 . 2 (𝜑 → (𝑆 ∈ (𝐵𝑚 ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
199189, 198mpbird 247 1 (𝜑𝑆 ∈ (𝐵𝑚 ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  wss 3567  ifcif 4077  cop 4174   class class class wbr 4644   × cxp 5102  ccnv 5103  dom cdm 5104  ran crn 5105  cima 5107  ccom 5108  Fun wfun 5870   Fn wfn 5871  wf 5872  cfv 5876  (class class class)co 6635  cmpt2 6637  1st c1st 7151  2nd c2nd 7152  𝑚 cmap 7842  cr 9920  1c1 9922   + caddc 9924   < clt 10059  cle 10060  cmin 10251  cn 11005  cz 11362  ...cfz 12311  subMat1csmat 29833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-smat 29834
This theorem is referenced by:  smatcl  29842  1smat1  29844
  Copyright terms: Public domain W3C validator