Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatlem Structured version   Visualization version   GIF version

Theorem smatlem 29687
Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
smatlem.i (𝜑𝐼 ∈ ℕ)
smatlem.j (𝜑𝐽 ∈ ℕ)
smatlem.1 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
smatlem.2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
Assertion
Ref Expression
smatlem (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))

Proof of Theorem smatlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.s . . . . . 6 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 fz1ssnn 12330 . . . . . . . 8 (1...𝑀) ⊆ ℕ
3 smat.k . . . . . . . 8 (𝜑𝐾 ∈ (1...𝑀))
42, 3sseldi 3586 . . . . . . 7 (𝜑𝐾 ∈ ℕ)
5 fz1ssnn 12330 . . . . . . . 8 (1...𝑁) ⊆ ℕ
6 smat.l . . . . . . . 8 (𝜑𝐿 ∈ (1...𝑁))
75, 6sseldi 3586 . . . . . . 7 (𝜑𝐿 ∈ ℕ)
8 smat.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
9 smatfval 29685 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
104, 7, 8, 9syl3anc 1323 . . . . . 6 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
111, 10syl5eq 2667 . . . . 5 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1211oveqd 6632 . . . 4 (𝜑 → (𝐼𝑆𝐽) = (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽))
13 df-ov 6618 . . . 4 (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩)
1412, 13syl6eq 2671 . . 3 (𝜑 → (𝐼𝑆𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩))
15 smatlem.i . . . . . . 7 (𝜑𝐼 ∈ ℕ)
16 smatlem.j . . . . . . 7 (𝜑𝐽 ∈ ℕ)
1715, 16jca 554 . . . . . 6 (𝜑 → (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
18 opelxp 5116 . . . . . 6 (⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ) ↔ (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
1917, 18sylibr 224 . . . . 5 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ))
20 eqid 2621 . . . . . 6 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
21 opex 4903 . . . . . 6 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
2220, 21dmmpt2 7200 . . . . 5 dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (ℕ × ℕ)
2319, 22syl6eleqr 2709 . . . 4 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2420mpt2fun 6727 . . . . 5 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
25 fvco 6241 . . . . 5 ((Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∧ ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2624, 25mpan 705 . . . 4 (⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2723, 26syl 17 . . 3 (𝜑 → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2814, 27eqtrd 2655 . 2 (𝜑 → (𝐼𝑆𝐽) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
29 df-ov 6618 . . . . 5 (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)
30 breq1 4626 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 < 𝐾𝐼 < 𝐾))
31 id 22 . . . . . . . . . 10 (𝑖 = 𝐼𝑖 = 𝐼)
32 oveq1 6622 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1))
3330, 31, 32ifbieq12d 4091 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)))
3433opeq1d 4383 . . . . . . . 8 (𝑖 = 𝐼 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
35 breq1 4626 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 < 𝐿𝐽 < 𝐿))
36 id 22 . . . . . . . . . 10 (𝑗 = 𝐽𝑗 = 𝐽)
37 oveq1 6622 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
3835, 36, 37ifbieq12d 4091 . . . . . . . . 9 (𝑗 = 𝐽 → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)))
3938opeq2d 4384 . . . . . . . 8 (𝑗 = 𝐽 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
40 opex 4903 . . . . . . . 8 ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ ∈ V
4134, 39, 20, 40ovmpt2 6761 . . . . . . 7 ((𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ) → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
4217, 41syl 17 . . . . . 6 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
43 smatlem.1 . . . . . . 7 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
44 smatlem.2 . . . . . . 7 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
4543, 44opeq12d 4385 . . . . . 6 (𝜑 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ = ⟨𝑋, 𝑌⟩)
4642, 45eqtrd 2655 . . . . 5 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨𝑋, 𝑌⟩)
4729, 46syl5eqr 2669 . . . 4 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩) = ⟨𝑋, 𝑌⟩)
4847fveq2d 6162 . . 3 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝐴‘⟨𝑋, 𝑌⟩))
49 df-ov 6618 . . 3 (𝑋𝐴𝑌) = (𝐴‘⟨𝑋, 𝑌⟩)
5048, 49syl6eqr 2673 . 2 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝑋𝐴𝑌))
5128, 50eqtrd 2655 1 (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  ifcif 4064  cop 4161   class class class wbr 4623   × cxp 5082  dom cdm 5084  ccom 5088  Fun wfun 5851  cfv 5857  (class class class)co 6615  cmpt2 6617  𝑚 cmap 7817  1c1 9897   + caddc 9899   < clt 10034  cn 10980  ...cfz 12284  subMat1csmat 29683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-z 11338  df-uz 11648  df-fz 12285  df-smat 29684
This theorem is referenced by:  smattl  29688  smattr  29689  smatbl  29690  smatbr  29691  1smat1  29694  madjusmdetlem3  29719
  Copyright terms: Public domain W3C validator