Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetr Structured version   Visualization version   GIF version

 Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 20697. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.)
Assertion
Ref Expression
smadiadetr (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))

StepHypRef Expression
1 3anass 1079 . . . . 5 ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾𝑁𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))))
2 oveq2 6800 . . . . . . . 8 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 Mat 𝑅) = (𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld)))
32fveq2d 6336 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))))
43eleq2d 2835 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ↔ 𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld)))))
5 fveq2 6332 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘𝑅) = (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))
65eleq2d 2835 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆 ∈ (Base‘𝑅) ↔ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))))
74, 63anbi13d 1548 . . . . 5 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾𝑁𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))))
81, 7syl5bbr 274 . . . 4 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))))
9 oveq2 6800 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 maDet 𝑅) = (𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld)))
10 oveq2 6800 . . . . . . . 8 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 matRRep 𝑅) = (𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld)))
1110oveqd 6809 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀(𝑁 matRRep 𝑅)𝑆) = (𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆))
1211oveqd 6809 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾))
139, 12fveq12d 6338 . . . . 5 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)))
14 fveq2 6332 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (.r𝑅) = (.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))
15 eqidd 2771 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → 𝑆 = 𝑆)
16 oveq2 6800 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 ∖ {𝐾}) maDet 𝑅) = ((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld)))
17 oveq2 6800 . . . . . . . . 9 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 subMat 𝑅) = (𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld)))
1817fveq1d 6334 . . . . . . . 8 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 subMat 𝑅)‘𝑀) = ((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀))
1918oveqd 6809 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))
2016, 19fveq12d 6338 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))
2114, 15, 20oveq123d 6813 . . . . 5 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))
2213, 21eqeq12d 2785 . . . 4 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) ↔ ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))))
238, 22imbi12d 333 . . 3 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) ↔ ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))))
24 cncrng 19981 . . . . 5 fld ∈ CRing
2524elimel 4287 . . . 4 if(𝑅 ∈ CRing, 𝑅, ℂfld) ∈ CRing
2625smadiadetg0 20698 . . 3 ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))
2723, 26dedth 4276 . 2 (𝑅 ∈ CRing → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))))
2827impl 443 1 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ∖ cdif 3718  ifcif 4223  {csn 4314  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  .rcmulr 16149  CRingccrg 18755  ℂfldccnfld 19960   Mat cmat 20429   matRRep cmarrep 20579   subMat csubma 20599   maDet cmdat 20607 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-dec 11695  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498  df-splice 13499  df-reverse 13500  df-s2 13801  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-0g 16309  df-gsum 16310  df-prds 16315  df-pws 16317  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-mulg 17748  df-subg 17798  df-ghm 17865  df-gim 17908  df-cntz 17956  df-oppg 17982  df-symg 18004  df-pmtr 18068  df-psgn 18117  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-rnghom 18924  df-drng 18958  df-subrg 18987  df-sra 19386  df-rgmod 19387  df-cnfld 19961  df-zring 20033  df-zrh 20066  df-dsmm 20292  df-frlm 20307  df-mat 20430  df-marrep 20581  df-subma 20600  df-mdet 20608  df-minmar1 20658 This theorem is referenced by:  cramerimplem1  20707  cramerimplem1OLD  20708  madjusmdetlem1  30227
 Copyright terms: Public domain W3C validator