![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sltso | Structured version Visualization version GIF version |
Description: Surreal less than totally orders the surreals. Alling's axiom (O). (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 32132 | . 2 ⊢ {〈1𝑜, ∅〉, 〈1𝑜, 2𝑜〉, 〈∅, 2𝑜〉} Or ({1𝑜, 2𝑜} ∪ {∅}) | |
2 | df-no 32102 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1𝑜, 2𝑜}} | |
3 | df-slt 32103 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1𝑜, ∅〉, 〈1𝑜, 2𝑜〉, 〈∅, 2𝑜〉} (𝑔‘𝑥)))} | |
4 | nosgnn0 32117 | . 2 ⊢ ¬ ∅ ∈ {1𝑜, 2𝑜} | |
5 | 1, 2, 3, 4 | soseq 32060 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4058 {cpr 4323 {ctp 4325 〈cop 4327 Or wor 5186 1𝑜c1o 7722 2𝑜c2o 7723 No csur 32099 <s cslt 32100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-1o 7729 df-2o 7730 df-no 32102 df-slt 32103 |
This theorem is referenced by: nosepne 32137 nosepdm 32140 nodenselem4 32143 nodenselem5 32144 nodenselem7 32146 nolt02o 32151 noresle 32152 nomaxmo 32153 noprefixmo 32154 nosupbnd1lem1 32160 nosupbnd1lem2 32161 nosupbnd1lem4 32163 nosupbnd1lem6 32165 nosupbnd1 32166 nosupbnd2lem1 32167 nosupbnd2 32168 noetalem3 32171 sltirr 32177 slttr 32178 sltasym 32179 sltlin 32180 slttrieq2 32181 slttrine 32182 sleloe 32185 sltletr 32187 slelttr 32188 |
Copyright terms: Public domain | W3C validator |