![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdcmn | Structured version Visualization version GIF version |
Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdcmn | ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2760 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2760 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2760 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2760 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | eqid 2760 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
7 | eqid 2760 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
8 | eqid 2760 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
9 | eqid 2760 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
10 | eqid 2760 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 30085 | . 2 ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (Scalar‘𝑊) ∈ SRing ∧ ∀𝑤 ∈ (Base‘(Scalar‘𝑊))∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠 ‘𝑊)(𝑦(+g‘𝑊)𝑥)) = ((𝑧( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑤(+g‘(Scalar‘𝑊))𝑧)( ·𝑠 ‘𝑊)𝑦) = ((𝑤( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦))) ∧ (((𝑤(.r‘(Scalar‘𝑊))𝑧)( ·𝑠 ‘𝑊)𝑦) = (𝑤( ·𝑠 ‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑦) = 𝑦 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑦) = (0g‘𝑊))))) |
12 | 11 | simp1bi 1140 | 1 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 .rcmulr 16164 Scalarcsca 16166 ·𝑠 cvsca 16167 0gc0g 16322 CMndccmn 18413 1rcur 18721 SRingcsrg 18725 SLModcslmd 30083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-slmd 30084 |
This theorem is referenced by: slmdmnd 30089 gsumvsca1 30112 gsumvsca2 30113 |
Copyright terms: Public domain | W3C validator |