![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vrid | Structured version Visualization version GIF version |
Description: Right identity law for the zero vector. (ax-hvaddid 28202 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vlid.a | ⊢ + = (+g‘𝑊) |
slmd0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vrid | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 30100 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | slmd0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | mndrid 17526 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 490 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ‘cfv 6030 (class class class)co 6791 Basecbs 16070 +gcplusg 16155 0gc0g 16314 Mndcmnd 17508 SLModcslmd 30094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-br 4784 df-opab 4844 df-mpt 4861 df-id 5156 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-iota 5993 df-fun 6032 df-fv 6038 df-riota 6752 df-ov 6794 df-0g 16316 df-mgm 17456 df-sgrp 17498 df-mnd 17509 df-cmn 18408 df-slmd 30095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |