![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sletr | Structured version Visualization version GIF version |
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sletr | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltletr 32209 | . . . . . . 7 ⊢ ((𝐶 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) | |
2 | 1 | 3coml 1122 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) |
3 | 2 | expcomd 453 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 → (𝐶 <s 𝐴 → 𝐶 <s 𝐵))) |
4 | 3 | imp 444 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (𝐶 <s 𝐴 → 𝐶 <s 𝐵)) |
5 | 4 | con3d 148 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (¬ 𝐶 <s 𝐵 → ¬ 𝐶 <s 𝐴)) |
6 | 5 | expimpd 630 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → ¬ 𝐶 <s 𝐴)) |
7 | slenlt 32205 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) | |
8 | 7 | 3adant1 1125 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) |
9 | 8 | anbi2d 742 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) ↔ (𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵))) |
10 | slenlt 32205 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) | |
11 | 10 | 3adant2 1126 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) |
12 | 6, 9, 11 | 3imtr4d 283 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2140 class class class wbr 4805 No csur 32121 <s cslt 32122 ≤s csle 32197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-ord 5888 df-on 5889 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-1o 7731 df-2o 7732 df-no 32124 df-slt 32125 df-sle 32198 |
This theorem is referenced by: sletrd 32215 |
Copyright terms: Public domain | W3C validator |