Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slenlt Structured version   Visualization version   GIF version

Theorem slenlt 32208
 Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slenlt ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))

Proof of Theorem slenlt
StepHypRef Expression
1 df-sle 32201 . . . 4 ≤s = (( No × No ) ∖ <s )
21breqi 4790 . . 3 (𝐴 ≤s 𝐵𝐴(( No × No ) ∖ <s )𝐵)
3 brdif 4837 . . 3 (𝐴(( No × No ) ∖ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵))
4 brxp 5287 . . . 4 (𝐴( No × No )𝐵 ↔ (𝐴 No 𝐵 No ))
54anbi1i 602 . . 3 ((𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵) ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
62, 3, 53bitri 286 . 2 (𝐴 ≤s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
7 ibar 512 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵)))
8 brcnvg 5441 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐵 <s 𝐴))
98notbid 307 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
107, 9bitr3d 270 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
116, 10syl5bb 272 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∈ wcel 2144   ∖ cdif 3718   class class class wbr 4784   × cxp 5247  ◡ccnv 5248   No csur 32124
 Copyright terms: Public domain W3C validator