Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmcl Structured version   Visualization version   GIF version

Theorem sitmcl 30743
 Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitmcl.0 (𝜑𝑊 ∈ Mnd)
sitmcl.1 (𝜑𝑊 ∈ ∞MetSp)
sitmcl.2 (𝜑𝑀 ran measures)
sitmcl.3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmcl.4 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmcl (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))

Proof of Theorem sitmcl
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (dist‘𝑊) = (dist‘𝑊)
2 sitmcl.1 . . 3 (𝜑𝑊 ∈ ∞MetSp)
3 sitmcl.2 . . 3 (𝜑𝑀 ran measures)
4 sitmcl.3 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
5 sitmcl.4 . . 3 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
61, 2, 3, 4, 5sitmfval 30742 . 2 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹𝑓 (dist‘𝑊)𝐺)))
7 xrge0base 30015 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge0topn 30319 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
98eqcomi 2769 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
10 eqid 2760 . . 3 (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞))) = (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞)))
11 xrge00 30016 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
12 ovex 6842 . . . 4 (0[,]+∞) ∈ V
13 eqid 2760 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
14 ax-xrsvsca 30004 . . . . 5 ·e = ( ·𝑠 ‘ℝ*𝑠)
1513, 14ressvsca 16254 . . . 4 ((0[,]+∞) ∈ V → ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞))))
1612, 15ax-mp 5 . . 3 ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞)))
17 ax-xrssca 30003 . . . . . 6 fld = (Scalar‘ℝ*𝑠)
1813, 17resssca 16253 . . . . 5 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘(ℝ*𝑠s (0[,]+∞))))
1912, 18ax-mp 5 . . . 4 fld = (Scalar‘(ℝ*𝑠s (0[,]+∞)))
2019fveq2i 6356 . . 3 (ℝHom‘ℝfld) = (ℝHom‘(Scalar‘(ℝ*𝑠s (0[,]+∞))))
21 ovexd 6844 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ V)
22 eqid 2760 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2760 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
24 eqid 2760 . . . . . . 7 (sigaGen‘(TopOpen‘𝑊)) = (sigaGen‘(TopOpen‘𝑊))
25 eqid 2760 . . . . . . 7 (0g𝑊) = (0g𝑊)
26 eqid 2760 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
27 eqid 2760 . . . . . . 7 (ℝHom‘(Scalar‘𝑊)) = (ℝHom‘(Scalar‘𝑊))
2822, 23, 24, 25, 26, 27, 2, 3, 4sibff 30728 . . . . . 6 (𝜑𝐹: dom 𝑀 (TopOpen‘𝑊))
29 xmstps 22479 . . . . . . . 8 (𝑊 ∈ ∞MetSp → 𝑊 ∈ TopSp)
3022, 23tpsuni 20962 . . . . . . . 8 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
312, 29, 303syl 18 . . . . . . 7 (𝜑 → (Base‘𝑊) = (TopOpen‘𝑊))
32 feq3 6189 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3428, 33mpbird 247 . . . . 5 (𝜑𝐹: dom 𝑀⟶(Base‘𝑊))
3522, 23, 24, 25, 26, 27, 2, 3, 5sibff 30728 . . . . . 6 (𝜑𝐺: dom 𝑀 (TopOpen‘𝑊))
36 feq3 6189 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3731, 36syl 17 . . . . . 6 (𝜑 → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3835, 37mpbird 247 . . . . 5 (𝜑𝐺: dom 𝑀⟶(Base‘𝑊))
39 dmexg 7263 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
40 uniexg 7121 . . . . . 6 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
413, 39, 403syl 18 . . . . 5 (𝜑 dom 𝑀 ∈ V)
4234, 38, 41ofresid 29774 . . . 4 (𝜑 → (𝐹𝑓 (dist‘𝑊)𝐺) = (𝐹𝑓 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺))
432, 29syl 17 . . . . 5 (𝜑𝑊 ∈ TopSp)
44 eqid 2760 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
4522, 44xmsxmet 22482 . . . . . . 7 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
46 xmetpsmet 22374 . . . . . . 7 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
472, 45, 463syl 18 . . . . . 6 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
48 psmetxrge0 22339 . . . . . 6 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
4947, 48syl 17 . . . . 5 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
50 xrge0tps 30318 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5150a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
5223, 22, 44xmstopn 22477 . . . . . . . 8 (𝑊 ∈ ∞MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
532, 52syl 17 . . . . . . 7 (𝜑 → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
54 eqid 2760 . . . . . . . . 9 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
5554methaus 22546 . . . . . . . 8 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
562, 45, 553syl 18 . . . . . . 7 (𝜑 → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
5753, 56eqeltrd 2839 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ Haus)
58 haust1 21378 . . . . . 6 ((TopOpen‘𝑊) ∈ Haus → (TopOpen‘𝑊) ∈ Fre)
5957, 58syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑊) ∈ Fre)
602, 45syl 17 . . . . . . 7 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
61 sitmcl.0 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
6222, 25mndidcl 17529 . . . . . . . 8 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
6361, 62syl 17 . . . . . . 7 (𝜑 → (0g𝑊) ∈ (Base‘𝑊))
64 xmet0 22368 . . . . . . 7 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (0g𝑊) ∈ (Base‘𝑊)) → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6560, 63, 64syl2anc 696 . . . . . 6 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6665, 11syl6eq 2810 . . . . 5 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = (0g‘(ℝ*𝑠s (0[,]+∞))))
6722, 23, 24, 25, 26, 27, 2, 3, 4, 7, 43, 49, 5, 51, 59, 66sibfof 30732 . . . 4 (𝜑 → (𝐹𝑓 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
6842, 67eqeltrd 2839 . . 3 (𝜑 → (𝐹𝑓 (dist‘𝑊)𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
69 rebase 20174 . . . . 5 ℝ = (Base‘ℝfld)
7069, 69xpeq12i 5294 . . . 4 (ℝ × ℝ) = ((Base‘ℝfld) × (Base‘ℝfld))
7170reseq2i 5548 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ ((Base‘ℝfld) × (Base‘ℝfld)))
72 xrge0cmn 20010 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7372a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
74 rerrext 30383 . . . . 5 fld ∈ ℝExt
7519, 74eqeltrri 2836 . . . 4 (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt
7675a1i 11 . . 3 (𝜑 → (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt )
77 rrhre 30395 . . . . . . . . 9 (ℝHom‘ℝfld) = ( I ↾ ℝ)
7877imaeq1i 5621 . . . . . . . 8 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (( I ↾ ℝ) “ (0[,)+∞))
79 0re 10252 . . . . . . . . . 10 0 ∈ ℝ
80 pnfxr 10304 . . . . . . . . . 10 +∞ ∈ ℝ*
81 icossre 12467 . . . . . . . . . 10 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (0[,)+∞) ⊆ ℝ)
8279, 80, 81mp2an 710 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
83 resiima 5638 . . . . . . . . 9 ((0[,)+∞) ⊆ ℝ → (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞))
8482, 83ax-mp 5 . . . . . . . 8 (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞)
8578, 84eqtri 2782 . . . . . . 7 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (0[,)+∞)
86 icossicc 12473 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
8785, 86eqsstri 3776 . . . . . 6 ((ℝHom‘ℝfld) “ (0[,)+∞)) ⊆ (0[,]+∞)
8887sseli 3740 . . . . 5 (𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) → 𝑚 ∈ (0[,]+∞))
89883ad2ant2 1129 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑚 ∈ (0[,]+∞))
90 simp3 1133 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
91 ge0xmulcl 12500 . . . 4 ((𝑚 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
9289, 90, 91syl2anc 696 . . 3 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
937, 9, 10, 11, 16, 20, 21, 3, 68, 19, 71, 51, 73, 76, 92sitgclg 30734 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹𝑓 (dist‘𝑊)𝐺)) ∈ (0[,]+∞))
946, 93eqeltrd 2839 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ⊆ wss 3715  ∪ cuni 4588   I cid 5173   × cxp 5264  dom cdm 5266  ran crn 5267   ↾ cres 5268   “ cima 5269  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ∘𝑓 cof 7061  ℝcr 10147  0cc0 10148  +∞cpnf 10283  ℝ*cxr 10285   ≤ cle 10287   ·e cxmu 12158  [,)cico 12390  [,]cicc 12391  Basecbs 16079   ↾s cress 16080  Scalarcsca 16166   ·𝑠 cvsca 16167  distcds 16172   ↾t crest 16303  TopOpenctopn 16304  0gc0g 16322  ordTopcordt 16381  ℝ*𝑠cxrs 16382  Mndcmnd 17515  CMndccmn 18413  PsMetcpsmet 19952  ∞Metcxmt 19953  MetOpencmopn 19958  ℝfldcrefld 20172  TopSpctps 20958  Frect1 21333  Hauscha 21334  ∞MetSpcxme 22343  ℝHomcrrh 30367   ℝExt crrext 30368  sigaGencsigagen 30531  measurescmeas 30588  sitmcsitm 30720  sitgcsitg 30721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-ac2 9497  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228  ax-xrssca 30003  ax-xrsvsca 30004 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-ac 9149  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-gcd 15439  df-numer 15665  df-denom 15666  df-gz 15856  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-ordt 16383  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-preset 17149  df-poset 17167  df-plt 17179  df-toset 17255  df-ps 17421  df-tsr 17422  df-plusf 17462  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-od 18168  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-rnghom 18937  df-drng 18971  df-field 18972  df-subrg 19000  df-abv 19039  df-lmod 19087  df-scaf 19088  df-sra 19394  df-rgmod 19395  df-nzr 19480  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-metu 19967  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-zlm 20075  df-chr 20076  df-refld 20173  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-t1 21340  df-haus 21341  df-reg 21342  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-fcls 21966  df-cnext 22085  df-tmd 22097  df-tgp 22098  df-tsms 22151  df-trg 22184  df-ust 22225  df-utop 22256  df-uss 22281  df-usp 22282  df-ucn 22301  df-cfilu 22312  df-cusp 22323  df-xms 22346  df-ms 22347  df-tms 22348  df-nm 22608  df-ngp 22609  df-nrg 22611  df-nlm 22612  df-ii 22901  df-cncf 22902  df-cfil 23273  df-cmet 23275  df-cms 23352  df-limc 23849  df-dv 23850  df-log 24523  df-omnd 30029  df-ogrp 30030  df-orng 30127  df-ofld 30128  df-qqh 30347  df-rrh 30369  df-rrext 30373  df-esum 30420  df-siga 30501  df-sigagen 30532  df-meas 30589  df-mbfm 30643  df-sitg 30722  df-sitm 30723 This theorem is referenced by:  sitmf  30744
 Copyright terms: Public domain W3C validator