![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitg0 | Structured version Visualization version GIF version |
Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sitg0.1 | ⊢ (𝜑 → 𝑊 ∈ TopSp) |
sitg0.2 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
Ref | Expression |
---|---|
sitg0 | ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | sitgval.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | sitgval.s | . . 3 ⊢ 𝑆 = (sigaGen‘𝐽) | |
4 | sitgval.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | sitgval.x | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | sitgval.h | . . 3 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
7 | sitgval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
8 | sitgval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
9 | sitg0.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ TopSp) | |
10 | sitg0.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sibf0 30736 | . . 3 ⊢ (𝜑 → (∪ dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | sitgfval 30743 | . 2 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))) |
13 | rnxpss 5706 | . . . . . . 7 ⊢ ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } | |
14 | ssdif0 4090 | . . . . . . 7 ⊢ (ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅) | |
15 | 13, 14 | mpbi 220 | . . . . . 6 ⊢ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ |
16 | mpteq1 4872 | . . . . . 6 ⊢ ((ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) |
18 | mpt0 6160 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ | |
19 | 17, 18 | eqtri 2793 | . . . 4 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ |
20 | 19 | oveq2i 6807 | . . 3 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅) |
21 | 4 | gsum0 17486 | . . 3 ⊢ (𝑊 Σg ∅) = 0 |
22 | 20, 21 | eqtri 2793 | . 2 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0 |
23 | 12, 22 | syl6eq 2821 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∖ cdif 3720 ⊆ wss 3723 ∅c0 4063 {csn 4317 ∪ cuni 4575 ↦ cmpt 4864 × cxp 5248 ◡ccnv 5249 dom cdm 5250 ran crn 5251 “ cima 5253 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 Scalarcsca 16152 ·𝑠 cvsca 16153 TopOpenctopn 16290 0gc0g 16308 Σg cgsu 16309 Mndcmnd 17502 TopSpctps 20957 ℝHomcrrh 30377 sigaGencsigagen 30541 measurescmeas 30598 sitgcsitg 30731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-map 8015 df-en 8114 df-fin 8117 df-seq 13009 df-0g 16310 df-gsum 16311 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-top 20919 df-topon 20936 df-topsp 20958 df-esum 30430 df-siga 30511 df-sigagen 30542 df-meas 30599 df-mbfm 30653 df-sitg 30732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |