MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Visualization version   GIF version

Theorem sineq0 24393
Description: A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 14972 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
21eqeq1d 2726 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0))
3 ax-icn 10108 . . . . . . . . . . . . . . . . . . . 20 i ∈ ℂ
4 mulcl 10133 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
53, 4mpan 708 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
6 efcl 14933 . . . . . . . . . . . . . . . . . . 19 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
8 negicn 10395 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
9 mulcl 10133 . . . . . . . . . . . . . . . . . . . 20 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
108, 9mpan 708 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
11 efcl 14933 . . . . . . . . . . . . . . . . . . 19 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
137, 12subcld 10505 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
14 2mulicn 11368 . . . . . . . . . . . . . . . . . 18 (2 · i) ∈ ℂ
15 2muline0 11369 . . . . . . . . . . . . . . . . . 18 (2 · i) ≠ 0
16 diveq0 10808 . . . . . . . . . . . . . . . . . 18 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1714, 15, 16mp3an23 1529 . . . . . . . . . . . . . . . . 17 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1813, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
197, 12subeq0ad 10515 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
202, 18, 193bitrd 294 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
21 oveq2 6773 . . . . . . . . . . . . . . . 16 ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
22 2cn 11204 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
23 mul12 10315 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
243, 22, 23mp3an12 1527 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
2552timesd 11388 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2624, 25eqtrd 2758 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2726fveq2d 6308 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
28 efadd 14944 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
295, 5, 28syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
3027, 29eqtr2d 2759 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘(i · (2 · 𝐴))))
31 efadd 14944 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
325, 10, 31syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
333negidi 10463 . . . . . . . . . . . . . . . . . . . . . . 23 (i + -i) = 0
3433oveq1i 6775 . . . . . . . . . . . . . . . . . . . . . 22 ((i + -i) · 𝐴) = (0 · 𝐴)
35 adddir 10144 . . . . . . . . . . . . . . . . . . . . . . 23 ((i ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
363, 8, 35mp3an12 1527 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
37 mul02 10327 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
3834, 36, 373eqtr3a 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
3938fveq2d 6308 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
40 ef0 14941 . . . . . . . . . . . . . . . . . . . 20 (exp‘0) = 1
4139, 40syl6eq 2774 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = 1)
4232, 41eqtr3d 2760 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = 1)
4330, 42eqeq12d 2739 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) ↔ (exp‘(i · (2 · 𝐴))) = 1))
44 fveq2 6304 . . . . . . . . . . . . . . . . 17 ((exp‘(i · (2 · 𝐴))) = 1 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
4543, 44syl6bi 243 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4621, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4720, 46sylbid 230 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
48 abs1 14157 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
4948eqeq2i 2736 . . . . . . . . . . . . . . 15 ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
50 2re 11203 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
51 2ne0 11226 . . . . . . . . . . . . . . . . 17 2 ≠ 0
52 mulre 13981 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
5350, 51, 52mp3an23 1529 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
54 mulcl 10133 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
5522, 54mpan 708 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
56 absefib 15048 . . . . . . . . . . . . . . . . 17 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5755, 56syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5853, 57bitr2d 269 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ↔ 𝐴 ∈ ℝ))
5949, 58syl5bb 272 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6047, 59sylibd 229 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → 𝐴 ∈ ℝ))
6160imp 444 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
62 pirp 24333 . . . . . . . . . . . 12 π ∈ ℝ+
63 modval 12785 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
6461, 62, 63sylancl 697 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
65 picn 24331 . . . . . . . . . . . . 13 π ∈ ℂ
66 pire 24330 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
67 pipos 24332 . . . . . . . . . . . . . . . . . 18 0 < π
6866, 67gt0ne0ii 10677 . . . . . . . . . . . . . . . . 17 π ≠ 0
69 redivcl 10857 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ π ≠ 0) → (𝐴 / π) ∈ ℝ)
7066, 68, 69mp3an23 1529 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 / π) ∈ ℝ)
7161, 70syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
7271flcld 12714 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
7372zcnd 11596 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
74 mulcl 10133 . . . . . . . . . . . . 13 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
7565, 73, 74sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
76 negsub 10442 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (π · (⌊‘(𝐴 / π))) ∈ ℂ) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
7775, 76syldan 488 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
78 mulcom 10135 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
7965, 73, 78sylancr 698 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
8079negeqd 10388 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = -((⌊‘(𝐴 / π)) · π))
81 mulneg1 10579 . . . . . . . . . . . . . 14 (((⌊‘(𝐴 / π)) ∈ ℂ ∧ π ∈ ℂ) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8273, 65, 81sylancl 697 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8380, 82eqtr4d 2761 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = (-(⌊‘(𝐴 / π)) · π))
8483oveq2d 6781 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8564, 77, 843eqtr2d 2764 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8685fveq2d 6308 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))
8786fveq2d 6308 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
8872znegcld 11597 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
89 abssinper 24390 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9088, 89syldan 488 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
91 simpr 479 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘𝐴) = 0)
9291fveq2d 6308 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘0))
9387, 90, 923eqtrd 2762 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘0))
94 abs0 14145 . . . . . . 7 (abs‘0) = 0
9593, 94syl6eq 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
96 modcl 12787 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) ∈ ℝ)
9761, 62, 96sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
98 modlt 12794 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
9961, 62, 98sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
10097, 99jca 555 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
101100biantrurd 530 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π))))
102 0re 10153 . . . . . . . . . . . 12 0 ∈ ℝ
103 rexr 10198 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ∈ ℝ*)
104 rexr 10198 . . . . . . . . . . . . 13 (π ∈ ℝ → π ∈ ℝ*)
105 elioo2 12330 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
106103, 104, 105syl2an 495 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
107102, 66, 106mp2an 710 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
108 3anan32 1083 . . . . . . . . . . 11 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
109107, 108bitri 264 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
110101, 109syl6bbr 278 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (𝐴 mod π) ∈ (0(,)π)))
111 sinq12gt0 24379 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
112 elioore 12319 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (𝐴 mod π) ∈ ℝ)
113112resincld 14993 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → (sin‘(𝐴 mod π)) ∈ ℝ)
114 ltle 10239 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (sin‘(𝐴 mod π)) ∈ ℝ) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
115102, 113, 114sylancr 698 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
116111, 115mpd 15 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → 0 ≤ (sin‘(𝐴 mod π)))
117113, 116absidd 14281 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → (abs‘(sin‘(𝐴 mod π))) = (sin‘(𝐴 mod π)))
118111, 117breqtrrd 4788 . . . . . . . . 9 ((𝐴 mod π) ∈ (0(,)π) → 0 < (abs‘(sin‘(𝐴 mod π))))
119110, 118syl6bi 243 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → 0 < (abs‘(sin‘(𝐴 mod π)))))
120 ltne 10247 . . . . . . . . 9 ((0 ∈ ℝ ∧ 0 < (abs‘(sin‘(𝐴 mod π)))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
121102, 120mpan 708 . . . . . . . 8 (0 < (abs‘(sin‘(𝐴 mod π))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
122119, 121syl6 35 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → (abs‘(sin‘(𝐴 mod π))) ≠ 0))
123122necon2bd 2912 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((abs‘(sin‘(𝐴 mod π))) = 0 → ¬ 0 < (𝐴 mod π)))
12495, 123mpd 15 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
125 modge0 12793 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
12661, 62, 125sylancl 697 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
127 leloe 10237 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
128102, 97, 127sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
129126, 128mpbid 222 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
130129ord 391 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
131124, 130mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
132131eqcomd 2730 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
133 mod0 12790 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
13461, 62, 133sylancl 697 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
135132, 134mpbid 222 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
136 divcan1 10807 . . . . 5 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝐴 / π) · π) = 𝐴)
13765, 68, 136mp3an23 1529 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
138137fveq2d 6308 . . 3 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
139 sinkpi 24391 . . 3 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
140138, 139sylan9req 2779 . 2 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
141135, 140impbida 913 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050  ici 10051   + caddc 10052   · cmul 10054  *cxr 10186   < clt 10187  cle 10188  cmin 10379  -cneg 10380   / cdiv 10797  2c2 11183  cz 11490  +crp 11946  (,)cioo 12289  cfl 12706   mod cmo 12783  abscabs 14094  expce 14912  sincsin 14914  πcpi 14917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751
This theorem is referenced by:  coseq1  24394  efeq1  24395  cosne0  24396  logf1o2  24516  coseq0  40495  sinaover2ne0  40499  dirker2re  40729  dirkerdenne0  40730  dirkertrigeqlem3  40737  dirkertrigeq  40738  dirkercncflem1  40740  dirkercncflem2  40741  dirkercncflem4  40743  fourierdlem103  40846  fourierdlem104  40847
  Copyright terms: Public domain W3C validator