MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinasin Structured version   Visualization version   GIF version

Theorem sinasin 24837
Description: The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 24840 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
sinasin (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴)

Proof of Theorem sinasin
StepHypRef Expression
1 asincl 24821 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ)
2 sinval 15058 . . 3 ((arcsin‘𝐴) ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)))
31, 2syl 17 . 2 (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)))
4 ax-icn 10201 . . . . . 6 i ∈ ℂ
5 mulcl 10226 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 670 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
76negcld 10585 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
8 ax-1cn 10200 . . . . . . 7 1 ∈ ℂ
9 sqcl 13132 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
10 subcl 10486 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 575 . . . . . 6 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
1211sqrtcld 14384 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
136, 7, 12pnpcan2d 10636 . . . 4 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · 𝐴) − -(i · 𝐴)))
14 efiasin 24836 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
15 mulneg12 10674 . . . . . . . . 9 ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
164, 1, 15sylancr 575 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
17 asinneg 24834 . . . . . . . . 9 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
1817oveq2d 6812 . . . . . . . 8 (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴)))
1916, 18eqtr4d 2808 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴)))
2019fveq2d 6337 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴))))
21 negcl 10487 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
22 efiasin 24836 . . . . . . 7 (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2321, 22syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
24 mulneg2 10673 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
254, 24mpan 670 . . . . . . 7 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
26 sqneg 13130 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2726oveq2d 6812 . . . . . . . 8 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
2827fveq2d 6337 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
2925, 28oveq12d 6814 . . . . . 6 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3020, 23, 293eqtrd 2809 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3114, 30oveq12d 6814 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))))
3262timesd 11482 . . . . 5 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
33 2cn 11297 . . . . . 6 2 ∈ ℂ
34 mulass 10230 . . . . . 6 ((2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · i) · 𝐴) = (2 · (i · 𝐴)))
3533, 4, 34mp3an12 1562 . . . . 5 (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = (2 · (i · 𝐴)))
366, 6subnegd 10605 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
3732, 35, 363eqtr4d 2815 . . . 4 (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = ((i · 𝐴) − -(i · 𝐴)))
3813, 31, 373eqtr4d 2815 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴))
39 mulcl 10226 . . . . . . 7 ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (i · (arcsin‘𝐴)) ∈ ℂ)
404, 1, 39sylancr 575 . . . . . 6 (𝐴 ∈ ℂ → (i · (arcsin‘𝐴)) ∈ ℂ)
41 efcl 15019 . . . . . 6 ((i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ)
4240, 41syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ)
43 negicn 10488 . . . . . . 7 -i ∈ ℂ
44 mulcl 10226 . . . . . . 7 ((-i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) ∈ ℂ)
4543, 1, 44sylancr 575 . . . . . 6 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) ∈ ℂ)
46 efcl 15019 . . . . . 6 ((-i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ)
4745, 46syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ)
4842, 47subcld 10598 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) ∈ ℂ)
49 id 22 . . . 4 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
50 2mulicn 11462 . . . . 5 (2 · i) ∈ ℂ
5150a1i 11 . . . 4 (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
52 2muline0 11463 . . . . 5 (2 · i) ≠ 0
5352a1i 11 . . . 4 (𝐴 ∈ ℂ → (2 · i) ≠ 0)
5448, 49, 51, 53divmul2d 11040 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴 ↔ ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴)))
5538, 54mpbird 247 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴)
563, 55eqtrd 2805 1 (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wne 2943  cfv 6030  (class class class)co 6796  cc 10140  0cc0 10142  1c1 10143  ici 10144   + caddc 10145   · cmul 10147  cmin 10472  -cneg 10473   / cdiv 10890  2c2 11276  cexp 13067  csqrt 14181  expce 14998  sincsin 15000  arcsincasin 24810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-asin 24813
This theorem is referenced by:  cosacos  24838  asinsinb  24845
  Copyright terms: Public domain W3C validator