![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinasin | Structured version Visualization version GIF version |
Description: The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 24840 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
sinasin | ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asincl 24821 | . . 3 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
2 | sinval 15058 | . . 3 ⊢ ((arcsin‘𝐴) ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i))) |
4 | ax-icn 10201 | . . . . . 6 ⊢ i ∈ ℂ | |
5 | mulcl 10226 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
6 | 4, 5 | mpan 670 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
7 | 6 | negcld 10585 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ) |
8 | ax-1cn 10200 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
9 | sqcl 13132 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
10 | subcl 10486 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
11 | 8, 9, 10 | sylancr 575 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
12 | 11 | sqrtcld 14384 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
13 | 6, 7, 12 | pnpcan2d 10636 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · 𝐴) − -(i · 𝐴))) |
14 | efiasin 24836 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | |
15 | mulneg12 10674 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | |
16 | 4, 1, 15 | sylancr 575 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) |
17 | asinneg 24834 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | |
18 | 17 | oveq2d 6812 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴))) |
19 | 16, 18 | eqtr4d 2808 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴))) |
20 | 19 | fveq2d 6337 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴)))) |
21 | negcl 10487 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
22 | efiasin 24836 | . . . . . . 7 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) |
24 | mulneg2 10673 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
25 | 4, 24 | mpan 670 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴)) |
26 | sqneg 13130 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | |
27 | 26 | oveq2d 6812 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2))) |
28 | 27 | fveq2d 6337 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2)))) |
29 | 25, 28 | oveq12d 6814 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
30 | 20, 23, 29 | 3eqtrd 2809 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
31 | 14, 30 | oveq12d 6814 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
32 | 6 | 2timesd 11482 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴))) |
33 | 2cn 11297 | . . . . . 6 ⊢ 2 ∈ ℂ | |
34 | mulass 10230 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · i) · 𝐴) = (2 · (i · 𝐴))) | |
35 | 33, 4, 34 | mp3an12 1562 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = (2 · (i · 𝐴))) |
36 | 6, 6 | subnegd 10605 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴))) |
37 | 32, 35, 36 | 3eqtr4d 2815 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = ((i · 𝐴) − -(i · 𝐴))) |
38 | 13, 31, 37 | 3eqtr4d 2815 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴)) |
39 | mulcl 10226 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (i · (arcsin‘𝐴)) ∈ ℂ) | |
40 | 4, 1, 39 | sylancr 575 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘𝐴)) ∈ ℂ) |
41 | efcl 15019 | . . . . . 6 ⊢ ((i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ) | |
42 | 40, 41 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ) |
43 | negicn 10488 | . . . . . . 7 ⊢ -i ∈ ℂ | |
44 | mulcl 10226 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) ∈ ℂ) | |
45 | 43, 1, 44 | sylancr 575 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) ∈ ℂ) |
46 | efcl 15019 | . . . . . 6 ⊢ ((-i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ) | |
47 | 45, 46 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ) |
48 | 42, 47 | subcld 10598 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) ∈ ℂ) |
49 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
50 | 2mulicn 11462 | . . . . 5 ⊢ (2 · i) ∈ ℂ | |
51 | 50 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · i) ∈ ℂ) |
52 | 2muline0 11463 | . . . . 5 ⊢ (2 · i) ≠ 0 | |
53 | 52 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · i) ≠ 0) |
54 | 48, 49, 51, 53 | divmul2d 11040 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴 ↔ ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴))) |
55 | 38, 54 | mpbird 247 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴) |
56 | 3, 55 | eqtrd 2805 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 1c1 10143 ici 10144 + caddc 10145 · cmul 10147 − cmin 10472 -cneg 10473 / cdiv 10890 2c2 11276 ↑cexp 13067 √csqrt 14181 expce 14998 sincsin 15000 arcsincasin 24810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 df-asin 24813 |
This theorem is referenced by: cosacos 24838 asinsinb 24845 |
Copyright terms: Public domain | W3C validator |