![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 813, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 482 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 482 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: fpwwe2lem3 9647 uzind 11661 latcl2 17249 clatlem 17312 dirge 17438 srgrz 18726 lmodvs1 19093 lmhmsca 19232 evlsvar 19725 mirbtwn 25752 dfcgra2 25920 3trlond 27325 3pthond 27327 3spthond 27329 axtgupdim2OLD 31055 mvtinf 31759 rngoid 34014 rngoideu 34015 rngorn1eq 34046 rngomndo 34047 mzpcl34 37796 icccncfext 40603 fourierdlem12 40839 fourierdlem34 40861 fourierdlem41 40868 fourierdlem48 40874 fourierdlem49 40875 fourierdlem74 40900 fourierdlem75 40901 fourierdlem76 40902 fourierdlem89 40915 fourierdlem91 40917 fourierdlem92 40918 fourierdlem94 40920 fourierdlem113 40939 sssalgen 41056 issalgend 41059 smfaddlem1 41477 |
Copyright terms: Public domain | W3C validator |