![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 767 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: el2xptp0 7381 icodiamlt 14394 psgnunilem2 18136 srgbinom 18766 psgndiflemA 20170 haust1 21379 cnhaus 21381 isreg2 21404 llynlly 21503 restnlly 21508 llyrest 21511 llyidm 21514 nllyidm 21515 cldllycmp 21521 txlly 21662 txnlly 21663 pthaus 21664 txhaus 21673 txkgen 21678 xkohaus 21679 xkococnlem 21685 cmetcaulem 23307 itg2add 23746 ulmdvlem3 24376 ax5seglem6 26035 fusgrfis 26443 wwlksnextfun 27038 umgr2wlkon 27092 connpconn 31546 cvmlift3lem2 31631 cvmlift3lem8 31637 noprefixmo 32176 nosupno 32177 scutbdaybnd 32249 ifscgr 32479 broutsideof3 32561 unblimceq0 32826 paddasslem10 35637 lhpexle2lem 35817 lhpexle3lem 35819 mpaaeu 38241 stoweidlem35 40774 stoweidlem56 40795 stoweidlem59 40798 |
Copyright terms: Public domain | W3C validator |