![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprl2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprl2 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1132 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 766 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: icodiamlt 14394 issubc3 16731 clsconn 21456 txlly 21662 txnlly 21663 itg2add 23746 ftc1a 24020 f1otrg 25972 ax5seglem6 26035 axcontlem9 26073 axcontlem10 26074 clwwlkf 27198 locfinref 30239 erdszelem7 31508 noprefixmo 32176 nosupbnd2 32190 btwnconn1lem13 32534 dfsalgen2 41081 |
Copyright terms: Public domain | W3C validator |