![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
Ref | Expression |
---|---|
pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | 1 | biimpa 500 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 474 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: elrabi 3391 oteqex 4993 fsnex 6578 fisupg 8249 fiinfg 8446 cantnff 8609 fseqenlem2 8886 fpwwe2lem11 9500 fpwwe2lem12 9501 fpwwe2 9503 rlimsqzlem 14423 ramub1lem2 15778 mriss 16342 invfun 16471 pltle 17008 subgslw 18077 frgpnabllem2 18323 cyggeninv 18331 ablfaclem3 18532 lmodfopnelem1 18947 psrbagf 19413 mplind 19550 pjff 20104 pjf2 20106 pjfo 20107 pjcss 20108 fvmptnn04ifc 20705 chfacfisf 20707 chfacfisfcpmat 20708 tg1 20816 cldss 20881 cnf2 21101 cncnp 21132 lly1stc 21347 refbas 21361 qtoptop2 21550 qtoprest 21568 elfm3 21801 flfelbas 21845 cnextf 21917 restutopopn 22089 cfilufbas 22140 fmucnd 22143 blgt0 22251 xblss2ps 22253 xblss2 22254 tngngp 22505 cfilfil 23111 iscau2 23121 caufpm 23126 cmetcaulem 23132 dvcnp2 23728 dvfsumrlim 23839 dvfsumrlim2 23840 fta1g 23972 dvdsflsumcom 24959 fsumvma 24983 vmadivsumb 25217 dchrisumlema 25222 dchrvmasumlem1 25229 dchrvmasum2lem 25230 dchrvmasumiflem1 25235 selbergb 25283 selberg2b 25286 pntibndlem3 25326 pntlem3 25343 motgrp 25483 oppnid 25683 sspnv 27709 lnof 27738 bloln 27767 reff 30034 signsply0 30756 cvmliftmolem1 31389 cvmlift2lem9a 31411 mbfresfi 33586 itg2gt0cn 33595 ismtyres 33737 ghomf 33819 rngoisohom 33909 pridlidl 33964 pridlnr 33965 maxidlidl 33970 lflf 34668 lkrcl 34697 cvrlt 34875 cvrle 34883 atbase 34894 llnbase 35113 lplnbase 35138 lvolbase 35182 psubssat 35358 lhpbase 35602 laut1o 35689 ldillaut 35715 ltrnldil 35726 diadmclN 36643 pell1234qrre 37733 lnmlsslnm 37968 cvgdvgrat 38829 stoweidlem34 40569 |
Copyright terms: Public domain | W3C validator |