![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 811 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr1 1204 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: oppccatid 16580 subccatid 16707 setccatid 16935 catccatid 16953 estrccatid 16973 xpccatid 17029 gsmsymgreqlem1 18050 dmdprdsplit 18646 neiptopnei 21138 neitr 21186 neitx 21612 tx1stc 21655 utop3cls 22256 metustsym 22561 ax5seg 26017 3pthdlem1 27316 esumpcvgval 30449 esum2d 30464 ifscgr 32457 brofs2 32490 brifs2 32491 btwnconn1lem8 32507 btwnconn1lem12 32511 seglecgr12im 32523 unbdqndv2 32808 lhp2lt 35790 cdlemd1 35988 cdleme3b 36019 cdleme3c 36020 cdleme3e 36022 cdlemf2 36352 cdlemg4c 36402 cdlemn11pre 37001 dihmeetlem12N 37109 stoweidlem60 40780 |
Copyright terms: Public domain | W3C validator |