![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplrd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 477 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 482 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: dfcgra2 25841 mtyf2 31676 ioodvbdlimc1lem2 40567 ioodvbdlimc2lem 40569 fourierdlem48 40791 fourierdlem76 40819 fourierdlem80 40823 fourierdlem93 40836 fourierdlem94 40837 fourierdlem104 40847 fourierdlem113 40856 ismea 41088 mea0 41091 meaiunlelem 41105 meaiuninclem 41117 omessle 41135 omedm 41136 carageniuncllem2 41159 hspmbllem3 41265 |
Copyright terms: Public domain | W3C validator |