![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 765 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: soltmin 5690 frfi 8370 wemappo 8619 iccsplit 12498 ccatswrd 13656 swrdccat3 13692 modfsummods 14724 pcdvdstr 15782 vdwlem12 15898 cshwsidrepswmod0 16003 iscatd2 16543 oppccomfpropd 16588 initoeu2lem0 16864 resssetc 16943 resscatc 16956 yonedalem4c 17118 mod1ile 17306 mod2ile 17307 prdsmndd 17524 grprcan 17656 mulgnn0dir 17772 mulgdir 17774 mulgass 17780 mulgnn0di 18431 mulgdi 18432 dprd2da 18641 lmodprop2d 19127 lssintcl 19166 prdslmodd 19171 islmhm2 19240 islbs2 19356 islbs3 19357 dmatmul 20505 mdetmul 20631 restopnb 21181 iunconn 21433 1stcelcls 21466 blsscls2 22510 stdbdbl 22523 xrsblre 22815 icccmplem2 22827 itg1val2 23650 cvxcl 24910 colline 25743 tglowdim2ln 25745 f1otrg 25950 f1otrge 25951 ax5seglem4 26011 ax5seglem5 26012 axcontlem3 26045 axcontlem8 26050 axcontlem9 26051 eengtrkg 26064 frgr3v 27429 xrofsup 29842 submomnd 30019 ogrpaddltbi 30028 erdszelem8 31487 resconn 31535 cvmliftmolem2 31571 cvmlift2lem12 31603 conway 32216 broutsideof3 32539 outsideoftr 32542 outsidele 32545 ltltncvr 35212 atcvrj2b 35221 cvrat4 35232 cvrat42 35233 2at0mat0 35314 islpln2a 35337 paddasslem11 35619 pmod1i 35637 lhpm0atN 35818 lautcvr 35881 cdlemg4c 36402 tendoplass 36573 tendodi1 36574 tendodi2 36575 dgrsub2 38207 ssinc 39763 ssdec 39764 ioondisj2 40217 ioondisj1 40218 pfxccat3 41936 ply1mulgsumlem2 42685 |
Copyright terms: Public domain | W3C validator |