MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpll2OLD Structured version   Visualization version   GIF version

Theorem simpll2OLD 1256
Description: Obsolete version of simpll2 1255 as of 23-Jun-2022. (Contributed by NM, 9-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simpll2OLD ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simpll2OLD
StepHypRef Expression
1 simpl2 1228 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
21adantr 466 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator