MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbiimOLD Structured version   Visualization version   GIF version

Theorem simplbiimOLD 662
Description: Obsolete proof of simplbiim 661 as of 26-Mar-2022. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
simplbiim.1 (𝜑 ↔ (𝜓𝜒))
simplbiim.2 (𝜒𝜃)
Assertion
Ref Expression
simplbiimOLD (𝜑𝜃)

Proof of Theorem simplbiimOLD
StepHypRef Expression
1 simplbiim.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 simplbiim.2 . . 3 (𝜒𝜃)
32adantl 473 . 2 ((𝜓𝜒) → 𝜃)
41, 3sylbi 207 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator