![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbiim | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simplbiim.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
simplbiim.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simplbiim | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbiim.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simprbi 479 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simplbiim.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: invdisjrab 4671 solin 5087 xpidtr 5553 elpredim 5730 mpt2difsnif 6795 ixpn0 7982 zltaddlt1le 12362 oddnn02np1 15119 sumeven 15157 dvdsprmpweqnn 15636 sgrpass 17337 zringndrg 19886 pmatcoe1fsupp 20554 t1sncld 21178 regsep 21186 nrmsep3 21207 ncvsprp 22998 ncvsm1 23000 ncvsdif 23001 ncvspi 23002 ncvspds 23007 lgsqrlem4 25119 vtxdginducedm1lem4 26494 hashecclwwlkn1 27041 umgrhashecclwwlk 27042 0spth 27104 eucrctshift 27221 frcond1 27246 2pthfrgr 27264 frgrncvvdeqlem7 27285 frgrncvvdeq 27289 frgrwopreglem3 27294 frgrwopreglem5lem 27300 frgr2wwlk1 27309 numclwlk1lem2f1 27347 stcltr1i 29261 bnj570 31101 bnj1145 31187 bnj1398 31228 bnj1442 31243 sconnpht 31337 poimirlem25 33564 2reu1 41507 lighneallem2 41848 fdmdifeqresdif 42445 |
Copyright terms: Public domain | W3C validator |