![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl31 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl31 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1226 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl3 1201 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: ax5seglem3a 26030 ax5seg 26038 uhgrwkspth 26885 usgr2wlkspth 26889 br8d 29754 br8 31978 nosupres 32184 cgrextend 32446 segconeq 32448 trisegint 32466 ifscgr 32482 cgrsub 32483 btwnxfr 32494 seglecgr12im 32548 segletr 32552 atbtwn 35247 3dim1 35268 2llnjaN 35367 4atlem10b 35406 4atlem11 35410 4atlem12 35413 2lplnj 35421 paddasslem4 35624 pmodlem1 35647 4atex2 35878 trlval3 35989 arglem1N 35992 cdleme0moN 36027 cdleme17b 36089 cdleme20 36126 cdleme21j 36138 cdleme28c 36174 cdleme35h2 36259 cdlemg6c 36422 cdlemg6 36425 cdlemg7N 36428 cdlemg8c 36431 cdlemg11a 36439 cdlemg11b 36444 cdlemg12e 36449 cdlemg16 36459 cdlemg16ALTN 36460 cdlemg16zz 36462 cdlemg20 36487 cdlemg22 36489 cdlemg37 36491 cdlemg31d 36502 cdlemg33b 36509 cdlemg33 36513 cdlemg39 36518 cdlemg42 36531 cdlemk25-3 36706 cdlemk33N 36711 cdlemk53b 36758 |
Copyright terms: Public domain | W3C validator |