![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1232 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl2 1202 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: mulgdirlem 17773 brbtwn2 25984 ax5seglem3a 26009 ax5seg 26017 axpasch 26020 axeuclid 26042 br8d 29729 br8 31953 nosupbnd2lem1 32167 cgrextend 32421 segconeq 32423 segconeu 32424 trisegint 32441 ifscgr 32457 cgrsub 32458 cgrxfr 32468 lineext 32489 seglecgr12im 32523 segletr 32527 lineunray 32560 lineelsb2 32561 cvrcmp 35073 cvlsupr2 35133 atcvrj2b 35221 atexchcvrN 35229 3atlem3 35274 3atlem5 35276 lplnnle2at 35330 lplnllnneN 35345 4atlem3 35385 4atlem10b 35394 4atlem12 35401 2llnma3r 35577 paddasslem4 35612 paddasslem7 35615 paddasslem8 35616 paddasslem12 35620 paddasslem13 35621 paddasslem15 35623 pmodlem1 35635 pmodlem2 35636 atmod1i1m 35647 llnexchb2lem 35657 4atex2 35866 ltrnatlw 35973 arglem1N 35980 cdlemd4 35991 cdlemd5 35992 cdleme16 36075 cdleme20 36114 cdleme21k 36128 cdleme27N 36159 cdleme28c 36162 cdleme43fsv1snlem 36210 cdleme38n 36254 cdleme40n 36258 cdleme41snaw 36266 cdlemg6c 36410 cdlemg8c 36419 cdlemg8 36421 cdlemg12e 36437 cdlemg16ALTN 36448 cdlemg16zz 36450 cdlemg18a 36468 cdlemg20 36475 cdlemg22 36477 cdlemg37 36479 cdlemg31d 36490 cdlemg33 36501 cdlemg38 36505 cdlemg44b 36522 cdlemk33N 36699 cdlemk34 36700 cdlemk38 36705 cdlemk35s-id 36728 cdlemk39s-id 36730 cdlemk53b 36746 cdlemk53 36747 cdlemk55 36751 cdlemk35u 36754 cdlemk55u 36756 cdleml3N 36768 cdlemn11pre 37001 |
Copyright terms: Public domain | W3C validator |