![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl2 1202 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: brbtwn2 26005 ax5seglem3a 26030 ax5seg 26038 axpasch 26041 axeuclid 26063 br8d 29750 br8 31974 nosupbnd2lem1 32188 cgrextend 32442 segconeq 32444 trisegint 32462 ifscgr 32478 cgrsub 32479 cgrxfr 32489 lineext 32510 seglecgr12im 32544 segletr 32548 lineunray 32581 lineelsb2 32582 cvrcmp 35091 cvlatexch3 35146 cvlsupr2 35151 atexchcvrN 35247 3dim1 35274 3dim2 35275 ps-1 35284 ps-2 35285 3atlem3 35292 3atlem5 35294 lplnnle2at 35348 lplnllnneN 35363 2llnjaN 35373 4atlem3 35403 4atlem10b 35412 4atlem12 35419 2llnma3r 35595 paddasslem4 35630 paddasslem7 35633 paddasslem8 35634 paddasslem12 35638 paddasslem13 35639 pmodlem1 35653 pmodlem2 35654 llnexchb2lem 35675 4atex2 35884 ltrnatlw 35991 trlval4 35996 arglem1N 35998 cdlemd4 36009 cdlemd5 36010 cdleme0moN 36033 cdleme16 36093 cdleme20 36132 cdleme21j 36144 cdleme21k 36146 cdleme27N 36177 cdleme28c 36180 cdleme43fsv1snlem 36228 cdleme38n 36272 cdleme40n 36276 cdleme41snaw 36284 cdlemg6c 36428 cdlemg8c 36437 cdlemg8 36439 cdlemg12e 36455 cdlemg16 36465 cdlemg16ALTN 36466 cdlemg16z 36467 cdlemg16zz 36468 cdlemg18a 36486 cdlemg20 36493 cdlemg22 36495 cdlemg37 36497 cdlemg27b 36504 cdlemg31d 36508 cdlemg33 36519 cdlemg38 36523 cdlemg44b 36540 cdlemk38 36723 cdlemk35s-id 36746 cdlemk39s-id 36748 cdlemk55 36769 cdlemk35u 36772 cdlemk55u 36774 cdleml3N 36786 cdlemn11pre 37019 |
Copyright terms: Public domain | W3C validator |