![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1106 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | adantr 480 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: soisores 6617 tfisi 7100 omopth2 7709 swrdsbslen 13494 swrdspsleq 13495 repswswrd 13577 ramub1lem1 15777 efgsfo 18198 lbspss 19130 maducoeval2 20494 madurid 20498 decpmatmullem 20624 mp2pm2mplem4 20662 llyrest 21336 ptbasin 21428 basqtop 21562 ustuqtop1 22092 mulcxp 24476 elwwlks2ons3im 26919 br8d 29548 isarchi2 29867 archiabllem2c 29877 cvmlift2lem10 31420 5segofs 32238 btwnconn1lem13 32331 2llnjaN 35170 paddasslem12 35435 lhp2lt 35605 lhpexle2lem 35613 lhpmcvr3 35629 lhpat3 35650 trlval3 35792 cdleme17b 35892 cdlemefr27cl 36008 cdlemg11b 36247 tendococl 36377 cdlemj3 36428 cdlemk35s-id 36543 cdlemk39s-id 36545 cdlemk53b 36561 cdlemk35u 36569 cdlemm10N 36724 dihopelvalcpre 36854 dihord6apre 36862 dihord5b 36865 dihglblem5apreN 36897 dihglblem2N 36900 dihmeetlem6 36915 dihmeetlem18N 36930 dvh3dim2 37054 dvh3dim3N 37055 jm2.25lem1 37882 limcleqr 40194 icccncfext 40418 fourierdlem87 40728 sge0seq 40981 smflimsuplem7 41353 |
Copyright terms: Public domain | W3C validator |