![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1232 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl1 1201 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: pythagtriplem4 15726 mply1topmatcl 20812 brbtwn2 25984 ax5seg 26017 br8 31953 nolt02o 32151 btwndiff 32440 ifscgr 32457 seglecgr12im 32523 atlatle 35110 cvlcvr1 35129 atbtwn 35235 3dimlem3 35250 3dimlem3OLDN 35251 4atlem3 35385 4atlem11 35398 4atlem12 35401 2lplnj 35409 paddasslem4 35612 paddasslem10 35618 pmodlem1 35635 llnexchb2lem 35657 pclfinclN 35739 arglem1N 35980 cdlemd4 35991 cdlemd 35997 cdleme16 36075 cdleme20 36114 cdleme21k 36128 cdleme22cN 36132 cdleme27N 36159 cdleme28c 36162 cdleme29ex 36164 cdleme32fva 36227 cdleme40n 36258 cdlemg15a 36445 cdlemg15 36446 cdlemg16ALTN 36448 cdlemg16z 36449 cdlemg20 36475 cdlemg22 36477 cdlemg29 36495 cdlemg38 36505 cdlemk56 36761 dihord2pre 37016 uzwo4 39720 fourierdlem77 40903 |
Copyright terms: Public domain | W3C validator |