![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1230 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl1 1201 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: pythagtriplem4 15746 pmatcollpw1lem1 20801 pmatcollpw1 20803 mp2pm2mplem2 20834 brbtwn2 26005 ax5seg 26038 3vfriswmgr 27453 br8 31974 nolt02o 32172 ifscgr 32478 seglecgr12im 32544 lkrshp 34913 atlatle 35128 cvlcvr1 35147 atbtwn 35253 3dimlem3 35268 3dimlem3OLDN 35269 1cvratex 35280 llnmlplnN 35346 4atlem3 35403 4atlem3a 35404 4atlem11 35416 4atlem12 35419 cdlemb 35601 paddasslem4 35630 paddasslem10 35636 pmodlem1 35653 llnexchb2lem 35675 arglem1N 35998 cdlemd4 36009 cdlemd 36015 cdleme16 36093 cdleme20 36132 cdleme21k 36146 cdleme22cN 36150 cdleme27N 36177 cdleme28c 36180 cdleme29ex 36182 cdleme32fva 36245 cdleme40n 36276 cdlemg15a 36463 cdlemg15 36464 cdlemg16ALTN 36466 cdlemg16z 36467 cdlemg20 36493 cdlemg22 36495 cdlemg29 36513 cdlemg38 36523 cdlemk33N 36717 cdlemk56 36779 fourierdlem77 40921 |
Copyright terms: Public domain | W3C validator |